Формулы по статике теоретическая механика. Основы механики для чайников

  • Айзенберг Т.Б., Воронков И.М., Осецкий В.М.. Руководство к решению задач по теоретической механике (6-е издание). М.: Высшая школа, 1968 (djvu)
  • Айзерман М.А. Классическая механика (2-е изд.). М.: Наука, 1980 (djvu)
  • Алешкевич В.А., Деденко Л.Г., Караваев В.А. Механика твердого тела. Лекции. М.: Физфак МГУ, 1997 (djvu)
  • Амелькин Н.И. Кинематика и динамика твердого тела, МФТИ, 2000 (pdf)
  • Аппель П. Теоретическая механика. Том 1. Статистика. Динамика точки. М.: Физматлит, 1960 (djvu)
  • Аппель П. Теоретическая механика. Том 2. Динамика системы. Аналитическая механика. М.: Физматлит, 1960 (djvu)
  • Арнольд В.И. Малые знаменатели и проблемы устойчивости движения в классической и небесной механике. Успехи математических наук т. XVIII, вып. 6 (114), с91-192, 1963 (djvu)
  • Арнольд В.И., Козлов В.В., Нейштадт А.И. Математические аспекты классической и небесной механики. М.: ВИНИТИ, 1985 (djvu)
  • Баринова М.Ф., Голубева О.В. Задачи и упражнения по классической механике. М.: Высш. школа, 1980 (djvu)
  • Бать М.И., Джанелидзе Г.Ю., Кельзон А.С. Теоретическая механика в примерах и задачах. Том 1: Статика и кинематика (5-е издание). М.: Наука, 1967 (djvu)
  • Бать М.И., Джанелидзе Г.Ю., Кельзон А.С. Теоретическая механика в примерах и задачах. Том 2: Динамика (3-е издание). М.: Наука, 1966 (djvu)
  • Бать М.И., Джанелидзе Г.Ю., Кельзон А.С. Теоретическая механика в примерах и задачах. Том 3: Специальные главы мехники. М.: Наука, 1973 (djvu)
  • Бекшаев С.Я., Фомин В.М. Основы теории колебаний. Одесса: ОГАСА, 2013 (pdf)
  • Беленький И.М. Введение в аналитическую механику. М.: Высш. школа, 1964 (djvu)
  • Березкин Е.Н. Курс теоретической механики (2-е изд.). М.: Изд. МГУ, 1974 (djvu)
  • Березкин Е.Н. Теоретическая механика. Методические указания (3-е изд.). М.: Изд. МГУ, 1970 (djvu)
  • Березкин Е.Н. Решение задач по теоретической механике, часть 1. М.: Изд. МГУ, 1973 (djvu)
  • Березкин Е.Н. Решение задач по теоретической механике, часть 2. М.: Изд. МГУ, 1974 (djvu)
  • Березова О.А., Друшляк Г.Е., Солодовников Р.В. Теоретическая механика. Сборник задач. Киев: Вища школа, 1980 (djvu)
  • Бидерман В.Л. Теория механических колебаний. М.: Высш. школа, 1980 (djvu)
  • Боголюбов Н.Н., Митропольский Ю.А., Самойленко А.М. Метод ускоренной сходимости в нелинейной механике. Киев: Наук. думка, 1969 (djvu)
  • Бражниченко Н.А., Кан В.Л. и др. Сборник задач по теоретической механике (2-е издание). М.: Высшая школа, 1967 (djvu)
  • Бутенин Н.В. Введение в аналитическую механику. М.: Наука, 1971 (djvu)
  • Бутенин Н.В., Лунц Я.Л., Меркин Д.Р. Курс теоретической механики. Том 1. Статика и кинематика (3-е издание). М.: Наука, 1979 (djvu)
  • Бутенин Н.В., Лунц Я.Л., Меркин Д.Р. Курс теоретической механики. Том 2. Динамика (2-е издание). М.: Наука, 1979 (djvu)
  • Бухгольц Н.Н. Основной курс теоретической механики. Том 1: Кинематика, статика, динамика материальной точки (6-е издание). М.: Наука, 1965 (djvu)
  • Бухгольц Н.Н. Основной курс теоретической механики. Том 2: Динамика системы материальных точек (4-е издание). М.: Наука, 1966 (djvu)
  • Бухгольц Н.Н., Воронков И.М., Минаков А.П. Сборник задач по теоретической механике (3-е издание). М.-Л.: ГИТТЛ, 1949 (djvu)
  • Валле-Пуссен Ш.-Ж. Лекции по теоретической механике, том 1. М.: ГИИЛ, 1948 (djvu)
  • Валле-Пуссен Ш.-Ж. Лекции по теоретической механике, том 2. М.: ГИИЛ, 1949 (djvu)
  • Вебстер А.Г. Механика материальных точек твердых, упругих и жидких тел (лекции по математической физике). Л.-М.: ГТТИ, 1933 (djvu)
  • Веретенников В.Г., Синицын В.А. Метод переменного действия (2-е издание). М.: Физматлит, 2005 (djvu)
  • Веселовский И.Н. Динамика. М.-Л.: ГИТТЛ, 1941 (djvu)
  • Веселовский И.Н. Сборник задач по теоретической механике. М.: ГИТТЛ, 1955 (djvu)
  • Виттенбург Й. Динамика систем твердых тел. М.: Мир, 1980 (djvu)
  • Воронков И.М. Курс теоретической механики (11-е издание). М.: Наука, 1964 (djvu)
  • Ганиев Р.Ф., Кононенко В.О. Колебания твердых тел. М.: Наука, 1976 (djvu)
  • Гантмахер Ф.Р. Лекции по аналитической механике. М.: Наука, 1966 (2-е издание) (djvu)
  • Гернет М.М. Курс теоретической механики. М.: Высш.школа (3-е издание), 1973 (djvu)
  • Геронимус Я.Л. Теоретическая механика (очерки об основных положениях). М.: Наука, 1973 (djvu)
  • Герц Г. Принципы механики, изложенные в новой связи. М.: АН СССР, 1959 (djvu)
  • Голдстейн Г. Классическая механика. М.: Гостехиздат, 1957 (djvu)
  • Голубева О.В. Теоретическая механика. М.: Высш. школа, 1968 (djvu)
  • Диментберг Ф.М. Винтовое исчисление и его приложения в механике. М.: Наука, 1965 (djvu)
  • Добронравов В.В. Основы аналитической механики. М.: Высшая школа, 1976 (djvu)
  • Жирнов Н.И. Классическая механика. М.: Просвещение, 1980 (djvu)
  • Жуковский Н.Е. Теоретическая механика (2-е издание). М.-Л.: ГИТТЛ, 1952 (djvu)
  • Журавлев В.Ф. Основания механики. Методические аспекты. М.: Институт проблем механики РАН (препринт N 251), 1985 (djvu)
  • Журавлев В.Ф. Основы теоретической механики (2-е издание). М.: Физматлит, 2001 (djvu)
  • Журавлев В.Ф., Климов Д.М. Прикладные методы в теории колебаний. М.: Наука, 1988 (djvu)
  • Зубов В.И., Ермолин В.С. и др. Динамика свободного твердого тела и определение его ориентации в пространстве. Л.: ЛГУ, 1968 (djvu)
  • Зубов В.Г. Механика. Серия "Начала физики". М.: Наука, 1978 (djvu)
  • История механики гироскопических систем. М.: Наука, 1975 (djvu)
  • Ишлинский А.Ю. (ред.). Теоретическая механика. Буквенные обозначения величин. Вып. 96. М: Наука, 1980 (djvu)
  • Ишлинский А.Ю., Борзов В.И., Степаненко Н.П. Сборник задач и упражнений по теории гироскопов. М.: Изд-во МГУ, 1979 (djvu)
  • Кабальский М.М., Кривошей В.Д., Савицкий Н.И., Чайковский Г.Н. Типовые задачи по теоретической механике и методы их решения. Киев: ГИТЛ УССР, 1956 (djvu)
  • Кильчевский Н.А. Курс теоретической механики, т.1: кинематика, статика, динамика точки, (2-е изд.), М.: Наука, 1977 (djvu)
  • Кильчевский Н.А. Курс теоретической механики, т.2: динамика системы, аналитическая механика, элементы теории потенциала, мехаиики сплошной среды, специальной и общей теории относительности, М.: Наука, 1977 (djvu)
  • Кирпичев В.Л. Беседы о механике. М.-Л.: ГИТТЛ, 1950 (djvu)
  • Климов Д.М. (ред.). Проблемы механики: Сб. статей. К 90-летию со дня рождения А. Ю. Ишлинского. М.: Физматлит, 2003 (djvu)
  • Козлов В.В. Методы качественного анализа в динамике твердого тела (2-е изд.). Ижевск: НИЦ "Регулярная и хаотическая динамика", 2000 (djvu)
  • Козлов В.В. Симметрии, топология и резонансы в гамильтоновой механике. Ижевск: Изд-во Удмуртского гос. университета, 1995 (djvu)
  • Космодемьянский А.А. Курс теоретической механики. Часть I. М.: Просвещение, 1965 (djvu)
  • Космодемьянский А.А. Курс теоретической механики. Часть II. М.: Просвещение, 1966 (djvu)
  • Коткин Г.Л., Сербо В.Г. Сборник задач по классической механике (2-е изд.). М.: Наука, 1977 (djvu)
  • Крагельский И.В., Щедров В.С. Развитие науки о трении. Сухое трение. М.: АН СССР, 1956 (djvu)
  • Лагранж Ж. Аналитическая механика, том 1. М.-Л.: ГИТТЛ, 1950 (djvu)
  • Лагранж Ж. Аналитическая механика, том 2. М.-Л.: ГИТТЛ, 1950 (djvu)
  • Ламб Г. Теоретическая механика. Том 2. Динамика. М.-Л.: ГТТИ, 1935 (djvu)
  • Ламб Г. Теоретическая механика. Том 3. Более сложные вопросы. М.-Л.: ОНТИ, 1936 (djvu)
  • Леви-Чивита Т., Амальди У. Курс теоретической механики. Том 1, часть 1: Кинематика, принципы механики. М.-Л.: НКТЛ СССР, 1935 (djvu)
  • Леви-Чивита Т., Амальди У. Курс теоретической механики. Том 1, часть 2: Кинематика, принципы механики, статика. М.: Из-во иностр. литературы, 1952 (djvu)
  • Леви-Чивита Т., Амальди У. Курс теоретической механики. Том 2, часть 1: Динамика систем с конечным числом степеней свободы. М.: Из-во иностр. литературы, 1951 (djvu)
  • Леви-Чивита Т., Амальди У. Курс теоретической механики. Том 2, часть 2: Динамика систем с конечным числом степеней свободы. М.: Из-во иностр. литературы, 1951 (djvu)
  • Лич Дж.У. Классическая механика. М.: Иностр. литература, 1961 (djvu)
  • Лунц Я.Л. Введение в теорию гироскопов. М.: Наука, 1972 (djvu)
  • Лурье А.И. Аналитическая механика. М.: ГИФМЛ, 1961 (djvu)
  • Ляпунов А.М. Общая задача об устойчивости движения. М.-Л.: ГИТТЛ, 1950 (djvu)
  • Маркеев А.П. Динамика тела, соприкасающегося с твердой поверхностью. М.: Наука, 1992 (djvu)
  • Маркеев А.П. Теоретическая механика, 2-е издание. Ижевск: РХД, 1999 (djvu)
  • Мартынюк А.А. Устойчивость движения сложных систем. Киев: Наук. думка, 1975 (djvu)
  • Меркин Д.Р. Введение в механику гибкой нити. М.: Наука, 1980 (djvu)
  • Механика в СССР за 50 лет. Том 1. Общая и прикладная механика. М.: Наука, 1968 (djvu)
  • Метелицын И.И. Теория гироскопа. Теория устойчивости. Избранные труды. М.: Наука, 1977 (djvu)
  • Мещерский И.В. Сборник задач по теоретической механике (34-е издание). М.: Наука, 1975 (djvu)
  • Мисюрев М.А. Методика решения задач по теоретической механике. М.: Высшая школа, 1963 (djvu)
  • Моисеев Н.Н. Асимптотические методы нелинейной механики. М.: Наука, 1969 (djvu)
  • Неймарк Ю.И., Фуфаев Н.А. Динамика неголономных систем. М.: Наука, 1967 (djvu)
  • Некрасов А.И. Курс теоретической механики. Том 1. Статика и кинематика (6-е изд.) М.: ГИТТЛ, 1956 (djvu)
  • Некрасов А.И. Курс теоретической механики. Том 2. Динамика (2-е изд.) М.: ГИТТЛ, 1953 (djvu)
  • Николаи Е.Л. Гироскоп и некоторые его технические применения в общедоступном изложении. М.-Л.: ГИТТЛ, 1947 (djvu)
  • Николаи Е.Л. Теория гироскопов. Л.-М.: ГИТТЛ, 1948 (djvu)
  • Николаи Е.Л. Теоретическая механика. Часть I. Статика. Кинематика (издание двадцатое). М.: ГИФМЛ, 1962 (djvu)
  • Николаи Е.Л. Теоретическая механика. Часть II. Динамика (издание тринадцатое). М.: ГИФМЛ, 1958 (djvu)
  • Новоселов В.С. Вариационные методы в механике. Л.: Изд-во ЛГУ, 1966 (djvu)
  • Ольховский И.И. Курс теоретической механики для физиков. М.: МГУ, 1978 (djvu)
  • Ольховский И.И., Павленко Ю.Г., Кузьменков Л.С. Задачи по теоретической механике для физиков. М.: МГУ, 1977 (djvu)
  • Парс Л.А. Аналитическая динамика. М.: Наука, 1971 (djvu)
  • Перельман Я.И. Занимательная механика (4-е издание). М.-Л.: ОНТИ, 1937 (djvu)
  • Планк М. Введение в теоретическую физику. Часть первая. Общая механика (2-е издание). М.-Л.: ГТТИ, 1932 (djvu)
  • Полак Л.С. (ред.) Вариационные принципы механики. Сборник статей классиков науки. М.: Физматгиз, 1959 (djvu)
  • Пуанкаре А. Лекции по небесной механике. М.: Наука, 1965 (djvu)
  • Пуанкаре А. Новая механика. Эволюция законов. М.: Современные проблемы: 1913 (djvu)
  • Розе Н.В. (ред.) Теоретическая механика. Часть 1. Механика материальной точки. Л.-М.: ГТТИ, 1932 (djvu)
  • Розе Н.В. (ред.) Теоретическая механика. Часть 2. Механика материальной системы и твердого тела. Л.-М.: ГТТИ, 1933 (djvu)
  • Розенблат Г.М. Сухое трение в задачах и решениях. М.-Ижевск: РХД, 2009 (pdf)
  • Рубановский В.Н., Самсонов В.А. Устойчивость стационарных движений в примерах и задачах. М.-Ижевск: РХД, 2003 (pdf)
  • Самсонов В.А. Конспект лекций по механике. М.: МГУ, 2015 (pdf)
  • Сахарный Н.Ф. Курс теоретической механики. М.: Высш. школа, 1964 (djvu)
  • Сборник научно-методических статей по теоретической механике. Выпуск 1. М.: Высш. школа, 1968 (djvu)
  • Сборник научно-методических статей по теоретической механике. Выпуск 2. М.: Высш. школа, 1971 (djvu)
  • Сборник научно-методических статей по теоретической механике. Выпуск 3. М.: Высш. школа, 1972 (djvu)
  • Сборник научно-методических статей по теоретической механике. Выпуск 4. М.: Высш. школа, 1974 (djvu)
  • Сборник научно-методических статей по теоретической механике. Выпуск 5. М.: Высш. школа, 1975 (djvu)
  • Сборник научно-методических статей по теоретической механике. Выпуск 6. М.: Высш. школа, 1976 (djvu)
  • Сборник научно-методических статей по теоретической механике. Выпуск 7. М.: Высш. школа, 1976 (djvu)
  • Сборник научно-методических статей по теоретической механике. Выпуск 8. М.: Высш. школа, 1977 (djvu)
  • Сборник научно-методических статей по теоретической механике. Выпуск 9. М.: Высш. школа, 1979 (djvu)
  • Сборник научно-методических статей по теоретической механике. Выпуск 10. М.: Высш. школа, 1980 (djvu)
  • Сборник научно-методических статей по теоретической механике. Выпуск 11. М.: Высш. школа, 1981 (djvu)
  • Сборник научно-методических статей по теоретической механике. Выпуск 12. М.: Высш. школа, 1982 (djvu)
  • Сборник научно-методических статей по теоретической механике. Выпуск 13. М.: Высш. школа, 1983 (djvu)
  • Сборник научно-методических статей по теоретической механике. Выпуск 14. М.: Высш. школа, 1983 (djvu)
  • Сборник научно-методических статей по теоретической механике. Выпуск 15. М.: Высш. школа, 1984 (djvu)
  • Сборник научно-методических статей по теоретической механике. Выпуск 16. М.: Высш. школа, 1986

В рамках любого учебного курса изучение физики начинается с механики. Не с теоретической, не с прикладной и не вычислительной, а со старой доброй классической механики. Эту механику еще называют механикой Ньютона. По легенде, ученый гулял по саду, увидел, как падает яблоко, и именно это явление подтолкнуло его к открытию закона всемирного тяготения. Конечно, закон существовал всегда, а Ньютон лишь придал ему понятную для людей форму, но его заслуга – бесценна. В данной статье мы не будем расписывать законы Ньютоновской механики максимально подробно, но изложим основы, базовые знания, определения и формулы, которые всегда могут сыграть Вам на руку.

Механика – раздел физики, наука, изучающая движение материальных тел и взаимодействия между ними.

Само слово имеет греческое происхождение и переводится как «искусство построения машин» . Но до построения машин нам еще как до Луны, поэтому пойдем по стопам наших предков, и будем изучать движение камней, брошенных под углом к горизонту, и яблок, падающих на головы с высоты h.


Почему изучение физики начинается именно с механики? Потому что это совершенно естественно, не с термодинамического же равновесия его начинать?!

Механика – одна из старейших наук, и исторически изучение физики началось именно с основ механики. Помещенные в рамки времени и пространства, люди, по сути, никак не могли начать с чего-то другого, при всем желании. Движущиеся тела – первое, на что мы обращаем свое внимание.

Что такое движение?

Механическое движение – это изменение положения тел в пространстве относительно друг друга с течением времени.

Именно после этого определения мы совершенно естественно приходим к понятию системы отсчета. Изменение положения тел в пространстве относительно друг друга. Ключевые слова здесь: относительно друг друга . Ведь пассажир в машине движется относительно стоящего на обочине человека с определенной скоростью, и покоится относительно своего соседа на сиденье рядом, и движется с какой-то другой скоростью относительно пассажира в машине, которая их обгоняет.


Именно поэтому, для того, чтобы нормально измерять параметры движущихся объектов и не запутаться, нам нужна система отсчета - жестко связанные между собой тело отсчета, система координат и часов. Например, земля движется вокруг солнца в гелиоцентрической системе отсчета. В быту практически все свои измерения мы проводим в геоцентрической системе отсчета, связанной с Землей. Земля – тело отсчета, относительно которого движутся машины, самолеты, люди, животные.


Механика, как наука, имеет свою задачу. Задача механики – в любой момент времени знать положение тела в пространстве. Иными словами, механика строит математическое описание движения и находит связи между физическими величинами, его характеризующими.

Для того, чтобы двигаться далее, нам понадобится понятие “материальная точка ”. Говорят, физика – точная наука, но физикам известно, сколько приближений и допущений приходится делать, чтобы согласовать эту самую точность. Никто никогда не видел материальной точки и не нюхал идеального газа, но они есть! С ними просто гораздо легче жить.

Материальная точка – тело, размерами и формой которого в контексте данной задачи можно пренебречь.

Разделы классической механики

Механика состоит из нескольких разделов

  • Кинематика
  • Динамика
  • Статика

Кинематика с физической точки зрения изучает, как именно тело движется. Другими словами, этот раздел занимается количественными характеристиками движения. Найти скорость, путь – типичные задачи кинематики

Динамика решает вопрос, почему оно движется именно так. То есть, рассматривает силы, действующие на тело.

Статика изучает равновесие тел под действием сил, то есть отвечает на вопрос: а почему оно вообще не падает?

Границы применимости классической механики

Классическая механика уже не претендует на статус науки, объясняющей все (в начале прошлого века все было совершенно иначе), и имеет четкие рамки применимости. Вообще, законы классической механики справедливы привычном нам по размеру мире (макромир). Они перестают работать в случае мира частиц, когда на смену классической приходит квантовая механика. Также классическая механика неприменима к случаям, когда движение тел происходит со скоростью, близкой к скорости света. В таких случаях ярко выраженными становятся релятивистские эффекты. Грубо говоря, в рамках квантовой и релятивистской механики – классическая механика, это частный случай, когда размеры тела велики, а скорость – мала.


Вообще говоря, квантовые и релятивистские эффекты никогда никуда не деваются, они имеют место быть и при обычном движении макроскопических тел со скоростью, много меньшей скорости света. Другое дело, что действие этих эффектов так мало, что не выходит за рамки самых точных измерений. Классическая механика, таким образом, никогда не потеряет своей фундаментальной важности.

Мы продолжим изучение физических основ механики в следующих статьях. Для лучшего понимания механики Вы всегда можете обратиться к нашим авторам , которые в индивидуальном порядке прольют свет на темное пятно самой сложной задачи.

Содержание

Кинематика

Кинематика материальной точки

Определение скорости и ускорения точки по заданным уравнениям ее движения

Дано: Уравнения движения точки: x = 12 sin(πt/6) , см; y = 6 cos 2 (πt/6) , см.

Установить вид ее траектории и для момента времени t = 1 с найти положение точки на траектории, ее скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории.

Поступательное и вращательное движение твердого тела

Дано:
t = 2 с; r 1 = 2 см, R 1 = 4 см; r 2 = 6 см, R 2 = 8 см; r 3 = 12 см, R 3 = 16 см; s 5 = t 3 - 6t (см).

Определить в момент времени t = 2 скорости точек A, C; угловое ускорение колеса 3; ускорение точки B и ускорение рейки 4.

Кинематический анализ плоского механизма


Дано:
R 1 , R 2 , L, AB, ω 1 .
Найти: ω 2 .


Плоский механизм состоит из стержней 1, 2, 3, 4 и ползуна E. Стержни соединены с помощью цилиндрических шарниров. Точка D расположена в середине стержня AB.
Дано: ω 1 , ε 1 .
Найти: скорости V A , V B , V D и V E ; угловые скорости ω 2 , ω 3 и ω 4 ; ускорение a B ; угловое ускорение ε AB звена AB; положения мгновенных центров скоростей P 2 и P 3 звеньев 2 и 3 механизма.

Определение абсолютной скорости и абсолютного ускорения точки

Прямоугольная пластина вращается вокруг неподвижной оси по закону φ = 6 t 2 - 3 t 3 . Положительное направление отсчета угла φ показано на рисунках дуговой стрелкой. Ось вращения OO 1 лежит в плоскости пластины (пластина вращается в пространстве).

По пластине вдоль прямой BD движется точка M . Задан закон ее относительного движения, т. е. зависимость s = AM = 40(t - 2 t 3) - 40 (s - в сантиметрах, t - в секундах). Расстояние b = 20 см . На рисунке точка M показана в положении, при котором s = AM > 0 (при s < 0 точка M находится по другую сторону от точки A ).

Найти абсолютную скорость и абсолютное ускорение точки M в момент времени t 1 = 1 с .

Динамика

Интегрирование дифференциальных уравнений движения материальной точки, находящейся под действием переменных сил

Груз D массой m, получив в точке A начальную скорость V 0 , движется в изогнутой трубе ABC, расположенной в вертикальной плоскости. На участке AB, длина которого l, на груз действует постоянная сила T(ее направление показано на рисунке) и сила R сопротивления среды (модуль этой силы R = μV 2 , вектор R направлен противоположно скорости V груза).

Груз, закончив движение на участке AB, в точке B трубы, не изменяя значения модуля своей скорости, переходит на участок BC. На участке BC на груз действует переменная сила F, проекция F x которой на ось x задана.

Считая груз материальной точкой, найти закон его движения на участке BC, т.е. x = f(t), где x = BD. Трением груза о трубу пренебречь.


Скачать решение задачи

Теорема об изменении кинетической энергии механической системы

Механическая система состоит из грузов 1 и 2, цилиндрического катка 3, двухступенчатых шкивов 4 и 5. Тела системы соединены нитями, намотанными на шкивы; участки нитей параллельны соответствующим плоскостям. Каток (сплошной однородный цилиндр) катится по опорной плоскости без скольжения. Радиусы ступеней шкивов 4 и 5 равны соответственно R 4 = 0,3 м, r 4 = 0,1 м, R 5 = 0,2 м, r 5 = 0,1 м. Массу каждого шкива считать равномерно распределенной по его внешнему ободу. Опорные плоскости грузов 1 и 2 шероховатые, коэффициент трения скольжения для каждого груза f = 0.1.

Под действием силы F, модуль которой изменяется по закону F = F(s), где s - перемещение точки ее приложения, система приходит в движение из состояния покоя. При движении системы на шкив 5 действуют силы сопротивления, момент которых относительно оси вращения постоянный и равен M 5 .

Определить значение угловой скорости шкива 4 в тот момент времени, когда перемещение s точки приложения силы F станет равным s 1 = 1,2 м.

Скачать решение задачи

Применение общего уравнения динамики к исследованию движения механической системы

Для механической системы определить линейное ускорение a 1 . Считать, что у блоков и катков массы распределены по наружному радиусу. Тросы и ремни считать невесомыми и нерастяжимыми; проскальзывание отсутствует. Трением качения и трением скольжения пренебречь.

Скачать решение задачи

Применение принципа Даламбера к определению реакций опор вращающегося тела

Вертикальный вал AK, вращающийся равномерно с угловой скоростью ω = 10 с -1 , закреплен подпятником в точке A и цилиндрическим подшипником в точке D.

К валу жестко прикреплены невесомый стержень 1 длиной l 1 = 0,3 м, на свободном конце которого расположен груз массой m 1 = 4 кг, и однородный стержень 2 длиной l 2 = 0,6 м, имеющий массу m 2 = 8 кг. Оба стержня лежат в одной вертикальной плоскости. Точки прикрепления стержней к валу, а также углы α и β указаны в таблице. Размеры AB=BD=DE=EK=b, где b = 0,4 м. Груз принять за материальную точку.

Пренебрегая массой вала, определить реакции подпятника и подшипника.

В рамках любого учебного курса изучение физики начинается с механики. Не с теоретической, не с прикладной и не вычислительной, а со старой доброй классической механики. Эту механику еще называют механикой Ньютона. По легенде, ученый гулял по саду, увидел, как падает яблоко, и именно это явление подтолкнуло его к открытию закона всемирного тяготения. Конечно, закон существовал всегда, а Ньютон лишь придал ему понятную для людей форму, но его заслуга – бесценна. В данной статье мы не будем расписывать законы Ньютоновской механики максимально подробно, но изложим основы, базовые знания, определения и формулы, которые всегда могут сыграть Вам на руку.

Механика – раздел физики, наука, изучающая движение материальных тел и взаимодействия между ними.

Само слово имеет греческое происхождение и переводится как «искусство построения машин» . Но до построения машин нам еще как до Луны, поэтому пойдем по стопам наших предков, и будем изучать движение камней, брошенных под углом к горизонту, и яблок, падающих на головы с высоты h.


Почему изучение физики начинается именно с механики? Потому что это совершенно естественно, не с термодинамического же равновесия его начинать?!

Механика – одна из старейших наук, и исторически изучение физики началось именно с основ механики. Помещенные в рамки времени и пространства, люди, по сути, никак не могли начать с чего-то другого, при всем желании. Движущиеся тела – первое, на что мы обращаем свое внимание.

Что такое движение?

Механическое движение – это изменение положения тел в пространстве относительно друг друга с течением времени.

Именно после этого определения мы совершенно естественно приходим к понятию системы отсчета. Изменение положения тел в пространстве относительно друг друга. Ключевые слова здесь: относительно друг друга . Ведь пассажир в машине движется относительно стоящего на обочине человека с определенной скоростью, и покоится относительно своего соседа на сиденье рядом, и движется с какой-то другой скоростью относительно пассажира в машине, которая их обгоняет.


Именно поэтому, для того, чтобы нормально измерять параметры движущихся объектов и не запутаться, нам нужна система отсчета - жестко связанные между собой тело отсчета, система координат и часов. Например, земля движется вокруг солнца в гелиоцентрической системе отсчета. В быту практически все свои измерения мы проводим в геоцентрической системе отсчета, связанной с Землей. Земля – тело отсчета, относительно которого движутся машины, самолеты, люди, животные.


Механика, как наука, имеет свою задачу. Задача механики – в любой момент времени знать положение тела в пространстве. Иными словами, механика строит математическое описание движения и находит связи между физическими величинами, его характеризующими.

Для того, чтобы двигаться далее, нам понадобится понятие “материальная точка ”. Говорят, физика – точная наука, но физикам известно, сколько приближений и допущений приходится делать, чтобы согласовать эту самую точность. Никто никогда не видел материальной точки и не нюхал идеального газа, но они есть! С ними просто гораздо легче жить.

Материальная точка – тело, размерами и формой которого в контексте данной задачи можно пренебречь.

Разделы классической механики

Механика состоит из нескольких разделов

  • Кинематика
  • Динамика
  • Статика

Кинематика с физической точки зрения изучает, как именно тело движется. Другими словами, этот раздел занимается количественными характеристиками движения. Найти скорость, путь – типичные задачи кинематики

Динамика решает вопрос, почему оно движется именно так. То есть, рассматривает силы, действующие на тело.

Статика изучает равновесие тел под действием сил, то есть отвечает на вопрос: а почему оно вообще не падает?

Границы применимости классической механики

Классическая механика уже не претендует на статус науки, объясняющей все (в начале прошлого века все было совершенно иначе), и имеет четкие рамки применимости. Вообще, законы классической механики справедливы привычном нам по размеру мире (макромир). Они перестают работать в случае мира частиц, когда на смену классической приходит квантовая механика. Также классическая механика неприменима к случаям, когда движение тел происходит со скоростью, близкой к скорости света. В таких случаях ярко выраженными становятся релятивистские эффекты. Грубо говоря, в рамках квантовой и релятивистской механики – классическая механика, это частный случай, когда размеры тела велики, а скорость – мала.


Вообще говоря, квантовые и релятивистские эффекты никогда никуда не деваются, они имеют место быть и при обычном движении макроскопических тел со скоростью, много меньшей скорости света. Другое дело, что действие этих эффектов так мало, что не выходит за рамки самых точных измерений. Классическая механика, таким образом, никогда не потеряет своей фундаментальной важности.

Мы продолжим изучение физических основ механики в следующих статьях. Для лучшего понимания механики Вы всегда можете обратиться к нашим авторам , которые в индивидуальном порядке прольют свет на темное пятно самой сложной задачи.

Кинематика точки.

1. Предмет теоретической механики. Основные абстракции.

Теоретическая механика - это наука, в которой изучаются общие законы механического движения и механического взаимодействия материальных тел

Механическим движением называется перемещение тела по отношению к другому телу, происходящее в пространстве и во времени.

Механическим взаимодействием называется такое взаимодействие материальных тел, которое изменяет характер их механического движения.

Статика - это раздел теоретической механики, в котором изучаются методы преобразования систем сил в эквивалентные системы и устанавливаются условия равновесия сил, приложенных к твердому телу.

Кинематика - это раздел теоретической механики, в котором изучаетсядвижение материальных тел в пространстве с геометрической точки зрения, независимо от действующих на них сил.

Динамика - это раздел механики, в котором изучается движение материальных тел в пространстве в зависимости от действующих на них сил.

Объекты изучения в теоретической механике:

материальная точка,

система материальных точек,

Абсолютно твердое тело.

Абсолютное пространство и абсолютное время независимы одно от другого. Абсолютное пространство - трехмерное, однородное, неподвижное евклидово пространство. Абсолютное время - течет от прошлого к будущему непрерывно, оно однородно, одинаково во всех точках пространства и не зависит от движения материи.

2. Предмет кинематики.

Кинематика - это раздел механики, в котором изучаются геометрические свойства движения тел без учета их инертности (т.е. массы) и действующих на них сил

Для определения положения движущегося тела (или точки) с тем телом, по отношению к которому изучается движение данного тела, жестко, связывают какую-нибудь систему координат, которая вместе с телом образует систему отсчета.

Основная задача кинематики состоит в том, чтобы, зная закон движения данного тела (точки), определить все кинематические величины, характеризующие его движение (скорость и ускорение).

3. Способы задания движения точки

· Естественный способ

Должно быть известно:

Траектория движения точки;

Начало и направление отсчета;

Закон движения точки по заданной траектории в форме (1.1)

· Координатный способ

Уравнения (1.2) – уравнения движения точки М.

Уравнение траектории точки М можно получить, исключив параметр времени « t » из уравнений (1.2)

· Векторный способ

(1.3)

Связь между координатным и векторным способами задания движения точки

(1.4)

Связь между координатным и естественным способами задания движения точки

Определить траекторию точки, исключив время из уравнений (1.2);

-- найти закон движения точки по траектории (воспользоваться выражением для дифференциала дуги)

После интегрирования получим закон движения точки по заданной траектории:

Связь между координатным и векторным способами задания движения точки определяется уравнением (1.4)

4. Определение скорости точки при векторном способе задания движения.

Пусть в момент времени t положение точки определяется радиусом-вектором , а в момент времени t 1 – радиусом-вектором , тогда за промежуток времени точка совершит перемещение .


(1.5)

средняя скорость точки,

направлен вектор также как и вектор

Скорость точки в данный момент времени

Чтобы получить скорость точки в данный момент времени, необходимо совершить предельный переход

(1.6)

(1.7)

Вектор скорости точки в данный момент времени равен первой производной от радиуса-вектора по времени и направлен по касательной к траектории в данной точке.

(единица измерения ¾ м/с, км/час)

Вектор среднего ускорения имеет то же направление, что и вектор Δ v , то есть, направлен в сторону вогнутости траектории.

Вектор ускорения точки в данный момент времени равен первой производной от вектора скорости или второй производной от радиуса-вектора точки по времени.

(еденица измерения - )

Как располагается вектор по отношению к траектории точки?

При прямолинейном движении вектор направлен вдоль прямой, по которой движется точка. Если траекторией точки является плоская кривая, то вектор ускорения , также как и вектор ср лежит в плоскости этой кривой и направлен в сторону ее вогнутости. Если траектория не является плоской кривой, то вектор ср будет направлен в сторону вогнутости траектории и будет лежать в плоскости, проходящей через касательную к траектории в точке М и прямую, параллельную касательной в соседней точке М 1 . В пределе, когда точка М 1 стремится к М эта плоскость занимает положение так называемой соприкасающейся плоскости. Следовательно, в общем случае вектор ускорения лежит в соприкасающейся плоскости и направлен в сторону вогнутости кривой.