Качественное и количественное определение органических соединений. Химия


Учреждение образования «Брестский государственный университет имени А.С. Пушкина»
Кафедра химии

КУРСОВАЯ РАБОТА
Методы исследования органических соединений

Выполнила:
студентка 5 курса,
биологического факультета
специальности «Биология. Химия»
очной формы обучения
Петручик Ирина Александровна

Научный руководитель:
Боричевский
Александр Иванович

Брест, 2012
Методы исследования органических соединений
ОГЛАВЛЕНИЕ
ВВЕДЕНИЕ………………………………………………………… ………….. 3

    Классификация методов исследования органических веществ………. 4
    Простейшие методы исследования органических веществ
2.1 Очистка органических веществ……………………………………... 5
2.1.1 Кристаллизация………………………………………… ……… 6
2.1.2 Возгонка………………………………………………………… . 7
2.1.3 Перегонка……………………………………………………… .. 8
2.1.4 Хроматография…………………………………………… …. 9-11
2.2 Анализ органических веществ………………………………….. 12-13
    Физико-химические методы исследования органических веществ… 14
3.1 Рефрактометрия………………………………………… ……….. 15-16
3.2 Калориметрия……………………………………………… ……… 17
3.3 Рентгенография и электронография…………………………… 18-19
3.4 Электрохимические методы исследования…………………… 20-21
3.5 Спектроскопия…………………………………………… …….. 22-27
ЗАКЛЮЧЕНИЕ…………………………………………………… ……….…. 28
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ…………………………. 29

ВВЕДЕНИЕ
Изучение органических веществ преследует цель установления строения вещества, его пространственной структуры и характеристических молекулярных орбиталей, изучение взаимодействия атомов и молекул, исследование скоростей и механизмов реакции. Ввиду огромного числа разнообразных органических соединений нельзя выработать единую схему анализа, как часто делается в неорганическом количественном анализе. И все же систематическое исследование позволяет достаточно надежно и быстро идентифицировать органическое вещество.
Установление строения органического вещества – это главная цель их изучения вне зависимости от метода исследования. Однако интересы, связанные с исследованием того или иного органического соединения, уже имеют разный характер. Особенную важность имеют вопросы, касающиеся природных ресурсов нашей планеты. Мы знаем, что особенное значение для человечества имеют источники нефти и газа, но они ограничены. Поэтому назрела проблема поисков нового сырья для органического и нефтехимического синтеза, получения нефти и газа искусственным путем. Но это лишь одна из причин изучения органических веществ. Если посмотреть вокруг, то все живое на Земле это органическая химия. Соответственно, изучение органических веществ это ключ к глобальным открытиям в области живой природы, возможность узнать все жизненноважные процессы, найти пути излечения многих страшных заболеваний, создавать самим живые материи и т.д.

    Классификация методов изучения органических веществ.
Методов исследования органических веществ большое множество. В зависимости от используемых приборов, использования определенных характеристик органических соединений и принципов работы, их можно классифицировать и выделить основные методы:
- простейшие методы изучения: очистка органических веществ (кристаллизация, возгонка, перегонка, хроматография, гель-фильтрация, электрофорез) и анализ органических веществ (количественный и качественные элементные анализы);
- физико-химические методы: рефрактометрия, калориметрия, измерение электрических дипольных моментов, рентгенография и электронография, электрохимические методы (полярография, анодная вольтамперометрия), спектроскопия (фотоэлектронная, масс-спектроскопия, инфракрасная и т.д.)

Простейшие методы исследования органических веществ

      Очистка органических веществ
Органические вещества, встречающиеся в природе, а также получающиеся в лабораториях и на химических заводах, обычно представляют собой смеси нескольких органических соединений. Компонентами смеси могут быть и неорганические вещества (соли, вода и др.). Для оценки чистоты вещества выбирают такие физико-химические характеристики, которые меняются в зависимости от степени его чистоты и являются постоянными для чистого индивидуального вещества.
Для характеристики чистоты вещества используют следующие константы и методы: температура плавления, температура кристаллизации, температура кипения, коэффициент преломления света, плотность, данные спектров поглощения (коэффициент интенсивности поглощения в электронных и инфракрасных спектрах), данные спектров ядерного магнитного резонанса (ЯМР), масс-спектрометрии, хроматографический анализ, люминесцентный анализ и др.
Получить чистое вещество – означает разделить данную смесь веществ на индивидуальные вещества, очистить до желаемой степени чистоты. Здесь необходимо различать две совокупности методов: методы разделения смеси на компоненты, которые еще не являются чистыми, и методы конечной очистки.
Говоря о чистоте химических веществ, нужно отдавать себе отчет в том, что абсолютно чисто вещество можно представить только теоретически. Абсолютно чистых веществ нет и быть не может. В зависимости от методы очистки вещество содержит определенное количество примесей. Обычными методами очистки можно достичь содержания основного вещества 99,9…99,95%. Специальными методами глубокой очистки можно уменьшить содержание примесей для органических веществ до 10 -3 ….10 -4 %

2.1.1 Кристаллизация
Кристаллизация является классическим методом очистки кристаллических веществ. Метод основан на том, что разные вещества имеют разную растворимость в определенном растворителе, причем понижение температуры (за редким исключением) приводит к уменьшению растворимости веществ. Фильтрованием горячего раствора отделяют нерастворимые примести, и после охлаждения вещество выделяется из раствора в виде кристаллов. Повторные перекристаллизации обычно уменьшают количество примесей. Вариантом метода является кристаллизация из расплава. Специальный вариант – зонная плавка – применяется для глубокой очистки веществ.
Например: нам необходимо очистить салициловую кислоту от примесей. Для этого мы берем взвешенную предварительно массу этой кислоты и рассчитываем необходимый обьем растворителя – воды, для того, чтобы получить насыщенный раствор, который впоследствии можно будет кристаллизировать.

2.1.2 Возгонка (Сублимация)
Многим кристаллическим веществам свойственна способность к возгонке, т.е. к переходу в газовую фазу, минуя жидкую, с последующей кристаллизацией из газовой фазы. Этот метод позволяет отделить сублимирующиеся вещества от несублимирующихся примесей и разделить смесь веществ с разными температурами сублимации или температурами кристаллизации из газовой фазы (градиентная возгонка). Если вещества возгоняются трудно и при высоких температурах разлагаются, применяют возгонку в вакууме или высоком вакууме – до 0,0013 Па (10 -5 мм рт.ст.; 1 мм рт.ст.=133,3 Па). Высоковакуумная возгонка в различных вариантах применяется для глубокой очистки.
Очистка твердого вещества возгонкой возможна только в том случае, если давление его паров выше, чем давление паров примесей. Когда давление паров твердого вещества соответствует приложенному давлению получают наилучшие результаты.
Например: Е-стильбен возгоняют при температуре 100 о С и давлении 20 мм рт. ст.

2.1.3 Перегонка (дистилляция)
Для многих низкоплавких веществ и большинства жидкостей хорошим методом очистки является
Фракционная перегонка при условии, что разница в температурах кипения компонентов смеси достаточно велика и не образуются азеотропные смеси. Селективность (эффективность) фракционной перегонки можно увеличить специальными приспособлениями: дефлегматорами, дистилляционными колоннами и др. Для высококипящих веществ применяется вакуумная перегонка. Вариантом метода является перегонка двухкомпонентных систем, которые при охлаждении расслаиваются, например перегонка с водным паром: лимонен (т.кип. 178 о С при 760 мм рт. ст.) перегоняется с водой (т.кип. 100 о С при 760 мм рт. ст.) при температуре 98 о С. При этом количественное соотношение в дистилляте (в граммах) лимонен: вода составляет 1: 1,54.

2.1.4 Хроматография
Методы хроматографического разделения основываются на различной способности веществ адсорбироваться на поверхности сорбента или распределяться между двумя несмешивающимися фазами (жидкость-жидкость, жидкость-газ), из которых одна фаза (жидкая) находится на поверхности сорбента. Поэтому различают разные виды хроматографии, а именно: жидкостную адсорбционную и распределительную хроматографию, газовую хроматографию.
Жидкостная адсорбционная хроматография основана на различной способности веществ сорбироваться на поверхности сорбента и десорбироваться при пропускании растворителя – элюента. В Качестве сорбентов применяют оксид алюминия, кремниевую кислоту и диоксид кремния (силикагели), гранулированные полисахариды (декстраны) или другие полимеры, которые в растворителе набухают, образуя гранулированный гель (гель-хроматография).
Жидкостная распределительная хроматография является разновидностью адсорбционной хроматографии, в которой сорбент (носитель) покрыт тонкой пленкой какой-то жидкости. Элюентом обычно является растворитель, который не смешивается с жидкостью на сорбенте. При пропускании элюента происходит распределение веществ между жидкой фазой и элюентом. Этот вид хроматографии наиболее пригоден для разделения веществ, хорошо растворимых в воде или способных образовывать растворимые в воде соли. К таким веществам относятся сахар, аминокислоты, многие органические красители, большая часть алкалоидов, моно- и поликарбоновые кислоты, спирты и т. д.

Пример жидкостной хроматографии смеси стандартов синтетических фосфолипидов (1) и образца грубого липддного экстракта из клеточной мембраны эритроцитов человека(2) на нормально фазной колонке при детектировании лазерным светорассеивающим детектором.НЛ – нейтральные липиды; ФЭ – фосфатидилэтаноламин; ФС – фосфатидилсерин; ФХ – фосфатидилхолин; СМ – сфингомиелин.
Газовая хроматография применяется для разделения смесей газообразных или легкоиспаряемых жидких и твердых веществ. Принцип метода подобен жидкостной хроматографии. Разделяемую смесь разбавляют газом-носителем (H 2, N 2 , He) и вводят в адсорбционные колонны. Газ-носитель является одновременно растворителем и элюентом. В качестве сорбентов используют тонкие порошки силикатных материалов, которые могут быть чистыми (газо-адсорбционная хроматография) или покрытыми пленкой нелетучей жидкости (газо-жидкостная хроматография). Используют также капилляры, покрытые внутри пленкой нелетучей жидкости (капиллярная хромотография). Газ-носитель постепенно десорбирует компоненты смеси и уносит с собой. Присутствие органических веществ в газе-носителе и их количество обнаруживается при помощи специальных детекторов и фиксируется самописцем. В препаративной хроматографии газ-носитель затем пропускают через специальные приемники, в которых органические вещества улавливают вымораживанием.
Этим методом можно достичь полного разделения смеси. При использовании адсорбционных колонн повышенной мощности метод применяется как препаративный для разделения небольших количеств веществ (1….10 г).

Пример газовой хроматографии: скоростной анализ паров взрывчатых веществ на поликапиллярной колонке при температуре 170°С.
Поликапиллярная колонка длиной всего 22 см позволяет за 2.5 минуты обнаружить и идентифицировать следовые количества паров взрывчатых веществ: 1 - 2,6-динитротолуол, 2 - 2.4-динитротолуол. 3 - 2,4,6-тринитротолуол, 4 - 3,4,5-трининитротолуол, 5 - 2.3,4-тринитротолуол, 6 - гексоген. 7 - тетрил.

      Анализ органических веществ
После того, как вещество получено в чистом виде, оно может быть подвергнуто дальнейшим исследованиям.
Первой задачей является качественное и количественное определение элементного состава. Затем по данным элементного анализа вычисляют простейшую суммарную формулу, определяют молекулярную массу и вычисляют истинную молекулярную брутто-формулу. И наконец, заключительным этапом является определение молекулярной структуры. Для этой цели используют химические методы (постепенное расщепление, получение производных), а в последнее время все чаще применяют физико-химические методы (масс-спектроскопия, рентгеноструктурный анализ, спектроскопия).
Количественный и качественный элементный анализ
В основе методов анализа лежит полное расщепление органического вещества в результате окисления или другим путем и определение химических элементов известными методами. Углерод определяют в виде СО 2, водород – в виде H 2 О, азот – измерением объема N 2 или определением NH 3 или NaCN (в зависимости от вида расщепления), галогены – в виду галогенид-ионов, серу – в виде сульфат- или сульфид-иона, фосфор в виду фосфат-иона и т.д.
Качественно углерод и водород определяют при нагревании с CuO:
C n H 2n +3nCuO>nCO 2 +nH 2 O+3nCu
И выделяющийся оксиду углерода обнаруживают пропусканием газа в раствор Ba(OH) 2 , а воду обнаруживают визуально на стенках пробирки.
Азот, серу и галогены качественно определяют при сплавлении натрием. Образующиеся NaCN, Na 2 S и галогениды натрия обнаруживают в водном растворе обычными аналитическими реакциями.
Для количественного анализа органических соединений существуют специальные пробы. Раньше обычно применялись установки для макроанализа (навеска образца 0,2 … 0,5 г). В наши дни распространены различные приборы для микроанализа (навеска 0,001…0,01 г), для ультрамикроанализа (навеска 10 -5 ...10 -4 г). Для количественного определения углерода и водорода используют приборы, в которых органическое вещество сжигают в токе кислорода: CO 2 улавливают раствором KOH, а H 2 O – специальным абсорбентом и определяют взвешиванием. Для количественного определения азота используют сожжение вещества при нагревании с CuO и объем выделившегося газа измеряют в азометре над раствором KOH. Галогены и серу количественно определяют сожжением образца в атмосфере кислорода, растворением газов в воде и титрованием галогенид-ионов или сульфат-иона.
Разработаны автоматические микроанализаторы с использованием принципа газовой хроматографии, в которых одновременно определяют углерод, водород, азот и серу.
Молекулярную массу соединения обычно определяют масс-спектрометрически.
    Физико-химические методы исследования органических веществ
Общее число физико-химических методов анализа довольно велико – оно составляет несколько десятков. Наиболее практическое значение среди них имеют следующие:
    Спектральные и другие оптические методы;
    Электрохимические методы;
    Хроматографические методы анализа.
Среди указанных трех групп наиболее обширной по числу методов и важной по практическому значению является группа спектральных и других оптических методов анализа. Она включает методы эмиссионной атомной спектроскопии, атомно-абсорбционной спектроскопии, инфракрасной спектроскопии, спектрофотометрии, люминесценции и другие методы, основанные на измерении различных эффектов при взаимодействии вещества с электромагнитным излучением.
Группа электрохимических методов анализа, основанная на измерении электрической проводимости, потенциалов и других свойств, включает методы кондуктометрии, потенциометрии, вольтамперометрии и т.д.
Но для того, чтобы точно убедиться в более лучшей эффективности этих методов и их действительном большом практическом значении, рассмотрим для сравнения и другие физико-химические методы.
      Рефрактометрия
Рефрактометрический метод исследования известен давно. Связывать значение коэффициента преломления света со структурой органического вещества можно при помощи молекулярной рефракции (R). Согласно Лоренцу:
, где n – коэффициент преломления света для D-линии натрия (589нм); M – молекулярная масса вещества; ?? – плотность.
Молекулярная рефракция имеет аддитивные свойства, т.е. молекулярная рефракция молекулы может быть получена суммированием рефракций составных частей молекулы. Такими составными частями являются химические связи и совокупность связей и атомов. Эти рефракции вычислены на основе исследований многих органических соединений и могут быть найдены в справочниках. Например:
R CH4 = 4 R C-H ; R CH3NO2 = 3 R C-H +R C-N +R NO2
Явление преломления света связано с поляризуемостью электронной системы молекул. Под влиянием электромагнитного поля света происходит поляризация молекул, в основном их электронных систем. Чем подвижнее электронная система молекулы, тем больше коэффициент преломления света и молекулярная рефракция.
Исследования молекулярной рефракции могут быть использованы для установления структуры соединения. Так, для изучаемого соединения экспериментально определяют молекулярную рефракцию и сравнивают с рефракцией, полученной суммированием рефракций связей по предполагаемой структурной формуле. Если результаты совпадают, то можно считать структуру доказанной, если нет, то надо искать другую структуру. В некоторых случаях наблюдают сильное увеличение молекулярной рефракции по сравнению с ожидаемой (экзальтация рефракции). Это характерно для сопряженных систем.
Значения молекулярной рефракции химических связей, атомов, молекул и ионов могут быть использованы для качественной оценки их поляризуемости. Поляризуемостью молекулы (иона, связи) называют способность ее к поляризации, т.е. к изменению положения ядер и состояния электронного облака под влиянием внешнего электрического поля. В основном происходит электронная поляризация.

3.2 Калориметрия
Калориметрия является методом исследования тепловых эффектов химических реакций и процессов фазовых переходов (например, плавления, кристаллизации, возгонки, конденсации). Процесс (реакцию) проводят в специальных приборах – калориметрах и количественно оценивают выделенное или поглощенное тепло.
Калориметрическим путем определяют молярные теплоты сгорания веществ. В свою очередь теплоты сгорания (W) используют для вычисления теплоты образования вещества E или стандартной энтальпии образования?H 0 . Теплота образования вещества может быть вычислена, исходя из элементов в атомарном состоянии или из элементов в «стандартном» состоянии (углерод в виду графита, газообразный водород и т.д.), при этом полученные числовые значения, естественно, отличаются. При рассмотрении табличных данных на это надо особенно обращать внимание. Обычно теплоты образования веществ для процесса вычисляются из атомов элементов, а?H 0 - из элементов в «стандартном» состоянии. Например, теплота образования углеводородов из атомов:
- nS - ] – W, где W – теплота сгорания; - теплота образования CO 2 (393,5 кДж/моль); - теплота образования воды (285,8 кДж/моль); S – теплота атомизации (возгонки) углерода (графита) (-715 кДж/моль); - теплота атомизации (диссоциации) молекулы водорода (-436 кДж/моль).
Чем меньше теплота сгорания, тем больше теплота образования соединений одинакового состава.
В основном этот метод служит для сравнения и характеристики стабильности и реакционной способности органических соединений.

3.3 Рентгенография и электронография
Рентгенографический метод – рентгеноструктурный анализ – основан на дифракции рентгеновских лучей в кристалле вещества. Рентгеновские лучи (электромагнитное излучение с длиной волны 0,1-10 нм) при прохождении через кристалл взаимодействует с электронными оболочками атомов. В результате этого взаимодействия происходит дифракция рентгеновских лучей и на фотопленке получается дифракционная картина – пятна или окружности. Из дифракционной картины при помощи сложных расчетов получают сведения о размещении молекул в элементарной ячейке кристалла и о расстояниях между атомами и углах между химическими связями. Чем меньше число электронов в атоме, тем слабее рефлексы рентгеновских лучей. Поэтому определить местонахождение атомов водорода весьма трудно.
Электронографический метод подобен рентгенографическому и основан на взаимодействии потока электронов с веществом. Поток электронов при прохождении через вещество напоминает электромагнитное излучение с очень небольшой длиной волны и дает дифракционную картину. Эти дифракционные картины (электронограммы) можно получить для веществ в газообразном состоянии или для очень тонких пленок. Дифракция электронов обусловлена взаимодействием электронов с атомными ядрами.
Эти методы структурного анализа дают возможность определить полную структуру молекулы – межатомные расстояния, углы между связями, т.е. точное пространственное расположение всех атомов молекулы в кристаллической решетке или в газообразном состоянии. Методом рентгеноструктурного анализа определена структура таких сложных природных веществ, как сахароза, пенициллин, стрихнин, витамин B 12 , некоторые белки (миоглобин) и нуклеиновые кислоты.
Из рентгенографических методов исследования было установлено, что ковалентный радиус атомов при sp 2 - и sp-гибридизации меняется в зависимости от типа связи, например в двойной связи С=С (С sp2 - С sp2) ковалентный радиус атома углерода С sp2 меньше, чем в связи =С-С (С sp2 - С sp3). В 1-ом случае он составляет 0,067 нм, во 2-ом – 0,076 нм, а в случае бензола - 0,0695 нм, т.е. длина связи также зависит уже от самого соединения и у каждого соединения длины связей являются уже индивидуальной характеристикой, что может пригодиться при идентификации определенного органического соединения.

3.4 Электрохимические методы исследования
Электрохимические методы основаны на зависимости силы тока от приложенного напряжения при прохождении тока через раствор в электролизерах специальной конструкции. В результате появляются кривые зависимости силы тока – напряжение (потенциал). Эти вольтамперные кривые характеризуют процессы, проходящие на электродах. На каотед происходит электрохимическое восстановление, а на аноде – электрохимическое окисление. В зависимости от типа изучаемого процесса (анодного или катодного) применяются приборы, отличающиеся между собой соотношением площадей электродов, материалом электродов и др
Полярография
В основе полярографического метода лежат катодные процессы (присоединение электрона к веществу на ртутном капающем электроде). Принципиальная схема полярографа очень проста. Он состоит из капающего ртутного микроэлектрода с непрерывно обновляющейся поверхностью и электрода сравнения (ртутный или другой нормальный электрод). Площадь катода значительно меньше площади анода, поэтому решающими в этом случае являются процессы поляризации катода. Органическое вещество диффундирует к катоду и принимает электрон, происходит деполяризация катода. Деполяризация катода начинается при определенном потенциале Е выд (потенциал восстановления или выделения, характерный для данного деполяризатора. В результате начинается электролиз и сила тока круто возрастает. При постепенном увеличении напряжения устанавливается некоторое стационарное значение силы тока (предельный ток), которое уже не зависит от повышения напряжения.
Полярографию можно использовать для характеристики процесса:

Метод полярографии широко используется для определения концентрации веществ в растворах.
Анодная вольтамперометрия
В основе этого метода лежат анодные процессы (окисление органического соединения на платиновом или графитовом аноде). С точки зрения экспериментального осуществления этот метод подобен полярографии.
Анодную вольтамперометрию используют для изучения процессов окисления:

Метод используют также для количественных определений веществ в растворах.

3.5 Спектроскопия
В основе спектроскопических методов лежит взаимодействие вещества с электромагнитным излучением, что вызывает поглощение излучения или его эмиссию. Взаимодействие возможно в очень широком интервале электромагнитных волн, начиная с?-лучей и кончая радиоволнами.
В зависимости от области электромагнитного спектра применяют различные эксперимен тальные методы и приборы.
В органической химии наиболее часто используются следующие области электромагнитного излучения:
- ультрафиолетовая (УФ) и видимая область спектра, где поглощается энергия, необходимая для возбуждения электронов в молекуле (вид электронной спектроскопии);
- инфракрасная (ИК) область, где поглощается энергия, необходимая для изменения колебательных состояний молекулы (колебательная спектроскопия);
- область радиочастотного излучения, где энергия затрачивается для переориентации спинов ядер (спектроскопия ядерного магнитного резонанса – ЯМР).
Спектральные методы применяются с целью идентификации и установления структуры соединений, анализа смесей, а также позволяют следить за ходом химических превращений. Достоинством спектральных методов является малый расход вещества (1 мг и менее).
Электронная спектроскопия
Электронный спектр возникает при поглощении веществом ультрафиолетового (длины волн 22-400 нм) и видимого (400-800 нм) излучения. Принципиальной разницы между этими участками спектра нет, они различаются лишь тем, что волны длиной 400-800 нм воспринимаются человеческим глазом, и мы видим вещество окрашенным.
Под действием УФ-света происходит возбуждение молекулы, т.е. переход электронов на более возбужденный уровень и перераспределение электронной плотности в молекуле. Труднее всего возбуждаются электроны, образующие?-связи, легче – электроны?-связей и неподеленные пары электронов.

Принадлежность органических веществ к определенным классам устанавливается функциональным анализом, их чистота – хроматографией, строение – всеми существующими физико-химическими методами исследования с учетом способа получения, а в случае необходимости и результатов встречного синтеза.

Качественный элементный анализ позволяет определить, из атомов каких элементов построены молекулы органического вещества; количественный элементный анализ устанавливает состав соединения и простейшую формулу.

При выполнении элементного анализа органические вещества «минерализуют», т.е. разлагают таким образом, чтобы углерод превратился в СО 2 , водород – в Н 2 О, азот – в N 2 , NH 3 или цианид - ионы CN - и т.п. Дальнейшее определение проводят обычными методами аналитической химии.

В функциональном анализе применяются химические, физические и физико-химические методы.

Для качественных проб на функциональные группы выбирают реакции, при которых происходит изменение окраски или разделение фаз (выпадение осадка, выделение газа). Реакций, характерных только для какой-нибудь одной функциональной группы, известно немного, и для того, чтобы установить, к какому классу соединений относится данное вещество, нужно проделать несколько качественных реакций.

Лабораторная работа № 3 «Качественный элементный анализ»

Практическая часть

Опыт №1 . Открытие углерода и водорода сожжением вещества с оксидом меди (П).

Реактивы : порошок оксида меди (П), сахароза, безводный медный купорос, известковая вода.

Оборудование : пробирки, пробка с газоотводной трубкой, вата, сухое горючее.

Дня проведения эксперимента в пробирку «а» (рис. 31) насыпают черного порошка оксида меди (П) на высоту около 10 мм. Добавляют одну лопаточку сахарозы, тщательно перемешивают, энергично встряхивают пробирку.

В верхнюю часть пробирки «а» вводят в виде пробки небольшой комочек ваты (рис. 3.23.). Насыпают на вату тонкий слой белого порошка - безводного медного купороса. Закрывают пробирку «а» пробкой с газоотводной трубкой. При этом конец трубки должен почти упираться в вату с CuSO 4 . Нижний конец трубки помещают в пробирку «б», предварительно наливают внее около 1-2 мл известковой воды. Конец газоотводной трубки должен быть погружен в известковую воду.

Рис.3.23. Открытие углерода и водорода

Нагревают пробирку «а» на пламени горелки. Если пробка плотно закрывает пробирку, то через несколько секундиз газоотводной трубки начнут выходить пузырьки газа. Как только известковая вода помутнеет, вследствие выделения белого осадка СаСОз, пробирку «б» убирают. Пробирку «а» продолжают нагревать по всей длине до ваты, пока пары воды не достигнут белого порошка -обезвоженного медного купороса, находящегося на ватном тампоне, и не вызовут посинения его вследствие образования кристаллогидрата CuSО 4 · 5Н 2 О. Если слишком большой кусок ваты, то она поглотит выделившиеся пары и посинения может не произойти.

Опыт №2. Открытие азота сплавлением вещества с металлическим натрием.

Реактивы : мочевина, металлический натрий, этиловый спирт, спиртовой раствор фенолфталеина, раствор железного купороса FeS0 4 , 2 н раствора НСl.

Оборудование : сухое горючее, пробирки.

Для открытия азота 5 - 10 мг испытуемого вещества, например, несколько кристаллов мочевины, помещают в сухую пробирку. Прибавляют к мочевине небольшой кусочек металлического натрия.

Нагревают осторожно смесь в пламени горелки, пробирку вносят и выносят из пламени, не нагревая ее постоянно! Когда мочевина расплавится, следят, чтобы она смешалась с натрием (для успеха опыта необходимо чтобы натрий плавился вместе с веществом, а не отдельно от него - не на стенке пробирки!). При этом иногда наблюдается небольшая вспышка. Нагревают, пока получится однородный сплав.

Когда пробирка остынет, добавляют в нее 5 капель этилового спирта для устранения остатков металлического натрия, который реагирует со спиртом не так бурно, как с водой. При этом происходит образование алкоголята натрия с выделением водорода:

2С 2 Н 5 ОН +2Na →2C 2 H 5 0Na + Н 2

Убедившись, что остаток натрия прореагировал со спиртом (прекращается шипение от выделения пузырьков газа), добавляют в пробирку 5 капель воды и нагревают ее на пламени горенки, чтобы все растворилось. При этом цианид натрия переходит в раствор, а алкоголят натрия с водой образует едкую щелочь:

C 2 H 5 ОNa + НОН → С 2 Н 5 ОН + NaОH

Добавляют в пробирку 1 каплю спиртового раствора фенолфталеина. Появление малиново-красного окрашивания показывает, что в растворе образовалась щелочь. После этого внести в пробирку 1 каплю раствора железного купороса FeS0 4 обычно содержащего примесь соли оксида железа (III) Fe 2 (S0 4) 3 . В присутствии щелочи немедленно образуется грязно - зеленый осадок гидроксида железа (II) в смеси с желтым осадком гидроксида железа (III).

При наличии в растворе избытка цианида натрия гидроксид железа (II) образует комплексную желтую кровавую соль:

Fe(OH) 2 + 2NaCN → Fe(CN) 2 + 2 NaOH

Fe(CN) 2 + 4NaCN → Na 4

Пипеткой наносят в центр фильтровальной бумажки каплю жидкости из пробирки. Как только капля впитается, на нее наносят 1 каплю 2 н раствора НСl. После подкисления грязно-зеленый или желтоватый осадок гидроксидов железа (II) и (Ш) растворяется и при наличии азота немедленно появляется синее пятно образовавшейся берлинской лазури:

Fe(OH) 3 + 3 НСl → FeСl 3 + 3 Н 2 О

3 Na 4 + 4FeСl 3 → Fe 4 3 + 12 NaСl

Опыт № 3 . Открытие серы сплавлением органического вещества с металлическим натрием.

Реактивы : тиомочевина или сульфаниловая кислота, металлический натрий, этиловый спирт, раствора ацетата свинца Рb(СН3СОО) 2 .

Оборудование : сухое горючее, пробирки.

Для открытия серы испытуемое вещество, например, тиомочевину или сульфаниловую кислоту, помещают в сухую пробирку. Достаточно взять всего несколько кристаллов вещества.(5 – 10мг).

Добавляют к веществу кусочек металлического натрия (столбик длиной около I мм). Пробирку нагревают, следя за тем, чтобы натрий плавился не отдельно, а вместе с веществом, иначе, опыт не удастся. Наблюдаемая небольшая вспышка натрия не опасна (см. предыдущий опыт). При этом органическое вещество (тиомочевина) переходит в неорганическое соединение - сульфид натрия.

Когда пробирка остынет, прибавляют в нее 5 капель этилового спирта для устранения остатков металлического натрия, который со спиртом образует, алкоголят натрия C 2 H 5 ОNa. После окончания реакции (прекращение выделения пузырьков газа - водорода) добавляют для растворения сплава 5 капель воды и кипятят, чтобы ускорить растворение. Сульфид натрия при этом перейдет в раствор вместе с гидроксидом натрия, который, однако, не мешает дальнейшей реакции.

Для открытия серы добавляют несколько капель раствора ацетата свинца Рb(СН3СОО) 2 . При этом выпадает темно-коричневый осадок сульфида свинца:

Рb(СН 3 СОО) 2 .+ Na 2 S → PbS ↓ + 2 CH 3 COONa

Это качественная реакция на ион двухвалентной серы S -2 .

Опыт № 4. Открытие хлора при действии водорода на органическое вещество.

Реактивы : хлороформ CHСl 3 , этиловый спирт, металлический натрий, концентрированная азотная кислота HNO 3 .

Оборудование : сухое горючее, пробирки.

Помещают в пробирку I каплю хлороформа CHСl 3 . Добавляют 5 капель этилового спирта и кусочек металлического натрия (столбик длиной 1 мм). При этом происходит следующая реакция:

С 2 Н 5 ОН + Na → C 2 H 5 ОNa + Н 2

Обращают внимание на выделяющийся водород. Его можно зажечь у отверстия пробирки, если предварительно закрыть это отверстие пальцем, чтобы, накопить водород, а потом поднести отверстие к пламени горелки. Водород в момент выделения отщепляет хлор от хлороформа и образует хлористый водород, реагирующий затем с образовавшимся алкоголятом натрия.

CHCl 3 + 3H 2 → CH 4 + 3HCl

C 2 H 5 ONa + HCl → C 2 H 5 OH + NaCl

После того, как прекращается выделение водорода, для растворения образующегося белого осадка, нерастворимого в этиловом спирте, добавляют 2-3 капли воды. При этом избыток алкоголята натрия реагирует с водой, образуя щелочь:

C 2 H 5 ОNa + НОН → С 2 Н 5 ОН + NaOH

В присутствии щелочи нельзя отрывать ион хлора, так как добавление раствора нитрата серебра немедленно дает коричневый осадок оксида серебра, маскирующего осадок хлорида серебра:

AgNO 3 + 2 NaOH → Ag 2 0 + H 2 0 + 2 NaN0 3

Поэтому добавляют к раствору сначала 2 - 3капли концентрированной азотной кислоты HNO 3 (в вытяжном шкафу) для нейтрализации щелочи, а затем уже 2 капли 0,1 н раствора AgN0 3 . При наличии хлора немедленно выпадает белый творожистый осадок хлорида серебра, нерастворимый в HNO 3:

NaCl + AgNO 3 → AgCl ↓+ NaNO 3

Ни в коем случае не следует брать для реакции больше 1 капли хлороформа, так как это только вредит чувствительности реакции. Остаток не вступившего в реакцию хлороформа еще до прибавления нитрата серебра дает с водой прочную эмульсию в виде беловатой мутной жидкости, которая будет маскировать появление белой мути от хлорида серебра.

Опыт № 5. Открытие хлора по зеленой окраске пламени (проба Бейльштейна).

Реактивы : хлороформ CHСl 3 .

Оборудование : сухое горючее, медная проволока.

Берут медную проволоку длиной около 10 см, загнутую на конце петлей и вставленную другим концом в небольшую корковую пробку. Держа за пробку, прокаливают петлю впламени горелки до исчезновения посторонней окраски пламени (признак загрязнения медной петли).

2Cu + O 2 → 2 CuO

Остывшую петлю, покрывшуюся черным налетом оксида меди (II), опускают в пробирку, на дно которой помещают испытуемое вещество, например хлороформ. Смоченную веществом петлю вновь вносят в пламя горелки. Немедленно появляется характерная ярко-зеленая окраска пламени вследствие образования летучего соединения меди с хлором. Подобную же окраску пламени дают, помимо хлористых и другие галогенсодержащие органические соединения.

2CHCl 3 + 5CuO → CuCl 2 +4 CuCl + 2CO 2 + H 2 O

Для очистки проволоку можно смочить соляной кислотой и прокалить.

В отчете пишут уравнения соответствующих реакций и делают вывод о наличии анализируемых элементов в веществах.

Вопросы коллоквиума:

1. В какие неорганические соединения переводят углерод-, водород-, азот-, серо- и хлорсодержащие органические соединения для качественного определения соответствующих элементов? Почему именно в эти неорганические соединения?

2. Для чего при открытии таких элементов, как азот, сера, хлор, добавляют этиловый спирт и воду?

3. В чем смысл пробы Бейльштейна?

Лабораторная работа № 4 «Функциональный анализ»

Для того чтобы отличить ароматические углеводороды от алифатических, можно использовать некоторые цветные реакции, например реакцию ароматических углеводородов с хлороформом в присутствии хлорида алюминия. Эта реакция сопровождается образованием окрашенных продуктов. Так, при взаимодействии бензола с хлороформом в присутствии AlCl 3 кроме основного продукта реакции – бесцветного трифенилметана, образуется также окрашенная соль трифенилкарбения:

Окрашено

Эту реакцию можно также использовать для обнаружения ароматических галогенпроизводных.

Опыт. К 1-2 мл хлороформа прибавляют 2-3 капли бензола, тщательно перемешивают и пробирку слегка наклоняют, чтобы смочить стенки. Добавляют 0,5-0,6 г безводного хлорида алюминия таким образом, чтобы часть порошка попала на стенки пробирки. Обращают внимание на окраску порошка на стенке и на цвет раствора. В реакции с бензолом возникает красно-оранжевая окраска, с дифенилом – пурпурная, с нафталином – синяя, с антраценом – зеленая.

Для того чтобы различить первичные, вторичные и третичные спирты, используется различная подвижность оксогруппы в реакции спиртов с раствором хлорида цинка в концентрированной соляной кислоте:

Третичные спирты взаимодействуют с этим реактивом с большей скоростью, давая нерастворимые галогеналкилы; первичные спирты реагируют только при продолжительном нагревании или стоянии, вторичные занимают промежуточное положение.

Опыт . В три пробирки наливают свежеприготовленный раствор хлорида цинка в соляной кислоте и охлаждают. В каждую пробирку добавляют по 3-4 капли соответственно первичного, вторичного или третичного спиртов, энергично встряхивают и оставляют в стакане с водой при 25-30 0 С. О начале реакции судят по помутнению раствора вследствие образования нерастворимого галогеналкила. Отмечают время помутнения раствора в каждой пробирке.

Качественные реакции карбонильных соединений многочисленны и разнообразны, что объясняется склонностью карбонильных соединений вступать в различные реакции замещения и присоединения.

Альдегиды жирного ряда восстанавливают двухвалентную медь в одновалентную. В качестве реактива, содержащего ионы Cu 2+ , применяется реактив Фелинга. Реактив Фелинга готовят перед употреблением, смешивая свежеприготовленный гидроксид меди (II), образующийся при взаимодействии гидроксида натрия с сульфатом меди(II), и раствор сегнетовой соли. При сливании растворов образуется гидроксид меди(II), который с сегнетовой солью дает комплексное соединение типа гликолята меди:

Ароматические альдегиды эту реакцию не дают.

Опыт . Приготавливают в пробирке реактив Фелинга, сливая по 1 мл исходных растворов, и прибавляют 2 мл карбонильного соединения. Верхнюю часть содержимого пробирки нагревают и наблюдают появление желтого или красного осадки оксида меди (I).

Практическая часть

Студентам выдается набор, состоящий из 6 бесцветных и прозрачных жидкостей, среди которых находятся по одному представителю алканов, ароматических углеводородов, спиртов (первичных, вторичных и третичных) и альдегидов. Названия представителей указываются преподавателем.

Задача студента, предварительно ознакомившись с основами функционального анализа, представленного во введении, составить план анализа, чтобы по его завершению можно было сделать вывод о нахождении того или иного соединения в пронумерованной пробирке.

В отчете пишут наблюдаемые явления, протекающие реакции и ход мышления. Делают вывод о принадлежности жидкостей к тому или иному классу и обосновывают его.

Лабораторная работа №5 «Тонкослойная хроматография»

Хроматография. Одним из наиболее простых и эффективных методов изучения состава смеси органических соединений, а также установление степени чистоты является тонкослойная хроматография (ТСХ). Наиболее широко применяется адсорбционный вариант ТСХ.

Процесс хроматографического разделения в этом варианте основан на различии в относительном сродстве компонентов анализируемой смеси к неподвижной фазе (сорбенту) и осуществляется в результате перемещения подвижной фазы (элюента) под действием капиллярных сил по слою сорбента, нанесенного на стеклянную или алюминиевую пластинку.

Хроматографирование проводится следующим образом. На пластинке отмечается стартовая и финишная линия (1-1,5 см от края пластинки). На стартовую линию в виде небольших пятен с помощью капилляра (не более 2-3 мм в диаметре) наносят раствор анализируемой смеси. Затем пластинку помещают в закрытую камеру с элюентом. Элюент представляет собой растворитель или смесь растворителей в различном соотношении. В качестве хроматографических камер используют как специальные камеры, так и различную химическую посуду: эксикаторы, стаканы, чашки Петри (рис.3.24.).

a) б)

Рис. 3.24. а) Эксикатор, оборудованный для тонкослойной хроматографии; б) использование стакана и чашки Петри для тонкослойной хроматографии.

При погружении нижней части пластинки в элюент линия старта должна находиться выше уровня растворителя. Поднимаясь по пластинке снизу вверх, растворитель разделяет нанесенные исследуемые вещества, перемещая их в слое сорбента с различной скоростью в зависимости от природы и свойств вещества. В результате компоненты смеси остаются на различном расстоянии от стартовой линии. Хроматографирование заканчивают, когда граница движущегося элюента достигнет линии финиша.

Затем пластинку достают из хроматографической камеры и высушивают на воздухе. Бесцветные соединения обнаруживают оптическим (ультрафиолет) или химическими методами. Последний метод заключается в обработке хроматограммы реагентами, которые взаимодействуют с анализируемыми веществами с образованием окрашенных пятен. Наиболее доступным и универсальным методом обнаружения является обработка парами иода. Для этого хроматограмму помещают на несколько минут в эксикатор, насыщенный парами иода.

После проявления пятен рассчитывают коэффициент подвижности R f , который представляет собой отношение расстояний от стартовой линии до центра пятна к расстоянию от стартовой до финишной линий (рис.3.25):

R f =L i /L

L i – расстояние от линии старта до центра пятна вещества i (см), L – расстояние от линии старта до лини финиша (см).

Рис.3.25. Хроматограмма, полученная при разделении смеси трех компонентов методом тонкослойной хроматографии.

Так же для идентификации веществ, входящие в состав анализируемой смеси, на стартовую линию дополнительно наносят растворы известных веществ – «свидетелей». После проявления пятен и вычисления R f сравнивают характеристики «свидетеля» и анализируемого вещества.

Практическая часть

Опыт №1. Обнаружение аскорбиновой кислоты (витамин С) во фруктовых соках.

Реактивы : сок апельсина (лимона, мандарина, рябины, граната и др.), элюент (этанол – гексан 3:1), 1%-ный раствор аскорбиновой кислоты.

Оборудование

На стартовую линию пластинки наносят пробы отфильтрованного сока апельсина (лимона, мандарина, рябины, граната и др.) и 1%-ного раствора аскорбиновой кислоты так, чтобы расстояние пятен от боковых краев и между собой было не менее 1 см. Когда пятна подсохнут, пластинку помещают в стакан, на дно которого наливают 2 мл элюента (этанол – гексан 3:1). Чтобы элюент не испарялся с поверхности пластинки, накрывают стакан чашкой Петри. После достижения элюента финишной линии, вынимают пластинку и высушивают ее на воздухе. Для обнаружения соединений помещают пластинку в эксикатор с парами иода. Отмечают проявившиеся пятна и определяют значение R f аскорбиновой кислоты.

Опыт №2. Обнаружение лимонной кислоты в лимоне.

Реактивы : сок лимона, раствор лимонной кислоты, элюент (этанол – гексан 3:1).

Оборудование : чашки Петри, стаканы, адсорбент Sorbfil, капилляры.

Аналогично предыдущему опыту на пластинку наносят пробы сока лимона и раствора лимонной кислоты («свидетель»). Выполняют хроматографирование и обнаружение аналогично опыту №1. Определяют значение R f лимонной кислоты.

Опыт №3. Обнаружение кофеина в чае и кофе.

Реактивы : растворы чая, кофе и кофеина, элюент этанол.

Оборудование : чашки Петри, стаканы, адсорбент Sorbfil, капилляры.

На линию старта пластинки наносят капли водного раствора чая, кофе и кофеина («свидетель»). Пластинку помещают в хроматографическую систему с этанолом в качестве элюента. Детектирование кофеина проводят парами иода. Определяют величину R f кофеина.

Опыт №4. Выделение кофеина и качественная реакция на него.

Реактивы : сухой чай, 30%-ный водный раствор пероксида водорода, концентрированный раствор аммиака, 10%-ный раствор соляной кислоты.

Оборудование : фарфоровая чашка, воронка, вата, асбестовая сетка, сухое горючее, предметное стекло.

Кофеин можно получить из листьев чая. Для этого в фарфоровую чашку насыпают около 0,5 – 1 г сухого чая, накрывают ее воронкой с заткнутым ватным тампоном отверстием и нагревают на асбестовой сетке около 10 мин. Сначала на внутренней части воронки конденсируются капельки воды, а затем начинает возгоняться кофеин, белые тонкие кристаллы которого осаждаются на холодных стенках воронки. Нагревание прекращают и после полного охлаждения фарфоровой чашки кристаллы кофеина счищают со стенок воронки и растворяют в 1 мл воды.

Для проверки наличия кофеина 1 каплю полученного раствора наносят на предметное стекло, добавляют 1 каплю 30%-ного водного раствора пероксида водорода и 1 каплю 10%-ной соляной кислоты. Смесь осторожно выпаривают досуха над пламенем сухого горючего. Стекло охлаждают и добавляют 1 каплю концентрированного раствора аммиака, а затем стекло вновь нагревают до полного испарения воды. Пурпурно красный цвет пятна указывает на наличие кофеина.

В отчете делают вывод об обнаружении заявленных компонентов в соках, фруктах и чае (кофе).

Вопросы коллоквиума:

1. На чем основан метод ТСХ?

2. Что такое коэффициент подвижности?

3. Что такое подвижная и неподвижная фаза?

4. Назовите методы проявления бесцветных пятен.

«Изучение состава органических соединений, их очистка и определение физических констант»

1. Иванов В.Г., Гева О.Н., Гаверова Ю.Г. Практикум по органической химии. - М.: Академия, 2000.

2. Артеменко А.И. Практикум по органической химии. - М.: Высшая школа, 2001.

3. Гинзбург О.Ф. Практикум по органической химии. Синтез и идентификация органических соединений. - М.: Высшая школа, 1989.


3.2. Ознакомительный (малый) практикум.

Лабораторная работа №6 «Алифатические углеводороды»

Углеводороды наиболее простые органические соединения, молекулы которых состоят только из атомов углерода и водорода. Углеводы, в молекулах которых углеродные атомы соединены друг с другом в открытые цепи (прямые или разветвленные), называют ациклическими (алифатическими) . От лат. Aliphatic – жирный. Первыми изученными соединениями этого класса были жиры.

Алициклические углеводороды – циклические соединения, молекулы которых построены из углеродных атомов, связанных между собой σ-связью. Основными представителями алициклических углеводородов являются циклоалканы (циклопарафины) и циклоалкены (циклоолефины) .

По характеру связи между углеродными атомами углеводороды могут быть предельными (насыщенными) и непредельными (ненасыщенными). К предельным углеводородам относятся алканы (парафины), к непредельным – алкены (олефины), алкадиены и алкины.

В алканах атомы углерода связаны между собой простой (одинарной) связью, в алкенах – двойной связью, алкинах – тройной связью. Алкадиены – это непредельные соединения, в молекулах которых имеются две двойные связи.

Предельные углеводороды при обычных условиях обладают большой химической инертностью. Это объясняется тем, что все σ-связи С-С и С-Н весьма прочны (энергии этих связей порядка 380 кДж/моль). К реакциям присоединения они вообще не способны вследствие ненасыщенности всех связей атомов углерода. С большинством химических реагентов алканы или вовсе не реагируют, или реагируют чрезвычайно медленно. Сильные окислители (например, перманганат калия) при комнатной температуре тоже не действуют на алканы.

При сравнительно невысоких температурах протекает лишь небольшое число реакций, при которых происходит замена атомов водорода на различные атомы или группы – реакции замещения.

Алкены и алкины являются более реакционно-способными из-за наличия двойной и тройной связи соответственно, которые можно считать функциональными группами. Естественно ожидать, что реакции алкенов и алкинов будут происходить по ненасыщенной связи – реакции присоединения.

Важными представителями алканов является метан СН 4 – главная часть природного (до 95-98%) и попутных газов. В значительных количествах он присутствует в газах переработки. Метан используют в основном в качестве дешевого топлива (в быту и промышленности). Он бесцветен и не имеет запаха. Для обнаружения его утечки в газопроводах добавляют небольшое количество сильно пахнущего вещества (одоранта).

Метан является ценным сырьем для химической промышленности. Из него получают ацетилен, галогенпроизводные, метанол, формальдегид и другие вещества. Метан служит для производства синтез - газа (водяного газа).

Изооктан (2,2,4-триметилпентан) С 8 Н 18 – главная составная часть высококачественного горючего (бензина) для карбюраторных двигателей внутреннего сгорания.

Средние члены гомологического ряда метана С 7 – С 17 используют как горючее для двигателей (бензин, керосин), а также в качестве растворителей. Высшие алканы С 18 – С 44 – сырье для производства моющих средств, смазочных масел, пластификаторов. К высшим алканам относится озокерит (горный воск), состоящий в основном из твердых алканов с разветвленной цепью углеродных атомов, число которых превышает 25-30.

Многие алкены широко используют в качестве мономеров (исходных продуктов) для получения высоко молекулярных соединений (полимеров).

Ацетилен используют для сварки и резки металлов, т.к. при горении в кислороде ацетилен создает высокотемпературное пламя (3150 0 С). Так же ацетилен – ценный продукт для химической промышленности. Из него получают синтетический каучук, уксусный альдегид и уксусную кислоту, этиловый спирт и многие другие вещества.

Практическая часть

Опыт №1 . Получение метана и его свойства.

Реактивы : ацетат натрия, натронная известь, бромная вода, раствор перманганата калия.

Оборудование : пробирка с газоотводной трубкой, штатив, лапка штатива, горелка.

В пробирку с газоотводной трубкой помещают смесь, состоящую из одной части обезвоженного тонкоизмельченного ацетата натрия и двух частей натронной извести (NaOH и CaO). Общий объем смеси 1-2 см (около 1/3 по высоте пробирки). Закрепляют пробирку в штативе в горизонтальном положении, нагревают ее в пламени горелки.

Поджигают метан у выхода газоотводной трубки через 2 минуты после выделения газа, т.е. после того, как улетучится гремучая смесь (смесь взрывоопасна!). Обращают внимание, что метан горит светящимся пламенем.

Выделяющийся метан пропускают через растворы бромной воды и KMnO 4 .

Изменяется ли окраска растворов? Почему?

Опыт №2 . Бромирование гексана.

Реактивы : гексан, бромная вода.

Оборудование : пробирка, стаканчик со льдом, горелка, пипетка.

А) Демонстрационный опыт . В две кюветы помещают 3 мл гексана и добавляют 4-5 капель раствора брома в четыреххлористом углероде и перемешивают. Одну кювету ставят под источник УФ-света, а другую накрывают бумагой и оставляют под тягой. Через 3-4 минуты сравнивают кюветы.

Б) В сухую пробирку помещают 1 мл гексана и несколько капель бромной воды. Содержимое пробирки перемешивают на холоде. . Нагревают содержимое пробирки на водяной бане до исчезновения окраски. Реакция сопровождается выделением HBr.

Как можно обнаружить выделение HBr?

Опыт №3 . Получение этилена и изучение его свойств.

Реактивы : этиловый спирт, серная кислота, песок, бромная вода, раствор перманганата калия.

Оборудование : коническая колба на 50 мл с газоотводной трубкой, пробирки, горелка.

В коническую колбу с газоотводной трубкой помещают 4-5 мл смеси этилового спирта и серной кислоты (1:5) и добавляют немного «кипелок» для равномерного кипения. Нагревают колбу со смесью в пламени горелки. Выделяющийся газ пропускают через раствор бромной воды, не прекращая нагревания. Отмечают, исчезает ли окраска брома .

После пропускания этилена через бромную воду и раствор перманганата калия этилен можно поджечь у конца газоотводной трубки. Он горит несветящимся пламенем.

Опыт №4 . Получение ацетилена и изучение его свойств.

Реактивы : карбид кальция, бромная вода, раствор перманганата калия.

Оборудование : пробирка с газоотводной трубкой, пробирки.

В сухую пробирку помещают кусочек карбида кальция и приливают воду, быстро закрывают пробирку пробкой с газоотводной трубкой и выделяющийся газ пропускают последовательно в пробирки с бромной водой, раствором KMnO 4 . Как изменяется окраска растворов?

Поджигают газ у конца отводной трубки. Ацетилен горит коптящим пламенем.

В отчете пишут наблюдения, уравнения всех проделанных реакций и называют полученные вещества. Делают вывод о сходстве и различии свойств алифатических углеводородов.

Вопросы коллоквиума:

1. Предложите радикальный цепной механизм бромирования гексана и ионный механизм бромирования этилена.

2. Напишите уравнения реакций получения ацетилена и уравнение реакции ацетилена с аммиачным раствором оксида серебра .

3. Приведите примеры углеводородов, содержащие первичный, вторичный и третичный атом углерода. Дайте им название.

4. Дайте определение изомерии. Изобразите возможные изомеры пентана и дайте им название.

5. Нахождение в природе важнейших углеводородов и их применение.

Лабораторная работа №7 «Галогеналканы»

Галогенпроизводными углеводородов называются органические соединения, образующиеся при замене атомов водорода в углеводородах на атомы галогенов. Соответственно галогеналканами называют производные алканов, в молекулах которых один или несколько атомов водорода замещены на атомы галогена.

В зависимости от числа атомов водорода, замещенных галогеном, различают моно-, ди-, тригалогенпроизводные и т.д.

Например: СН 3 Сl (хлорметан, метилхлорид), СН 2 Сl 2 (дихлорметан, метиленхлорид), CHCl 3 (трихлорметан, хлороформ), CCl 4 (тетрахлорметан, четыреххлористый углерод, тетрахлорид углерода).

В зависимости от типа атома углерода, связанного с галогеном, галогеналканы классифицируют как первичные, вторичные и третичные.

Также как и среди углеводородов, различают предельные, непредельные, циклические и ароматические галогенпроизводные углеводородов.

бромэтан 2-бромпропан 2-бром-2-метилпропан

(этилбромид) (изопропилбромид) (трет -бутилбромид)

первичный вторичный третичный

галогеналкан галогеналкан галогеналкан

хлорциклобутан бромциклогексан бромбензол

Низшие алкилгалогениды – газообразные вещества, средние – жидкости, высшие – твердые вещества. Галогеналкилы почти нерастворимы в воде. Низшие члены ряда обладают характерным запахом.

Химические свойства галогенпроизводных определяется главным образом атомом галогена, связанного с радикалом. Галогенпроизводные вступают в реакции замещения и отщепления. Наличие кратной связи приводит к увеличению реакционной способности.

Реакции с нуклеофилами – наиболее распространенные превращения галогеналканов.

Практическая часть

Опыт№1 . Получение 2-бромпропана (бромистого изопропила).

Реактивы : изопропиловый спирт, концентрированная серная кислота, бромид калия.

Оборудование : пробирки с газоотводной трубкой, лед, штативы, стаканчики, плитка.

В пробирку с газоотводной трубкой наливают 1,5-2 мл изопропилового спирта и 2 мл концентрированной серной кислоты. Смесь охлаждают и добавляют 1-2 мл воды. Продолжая охлаждение, всыпают в пробирку 1,5 г бромида калия. Присоединив газоотводную трубку, укрепляют пробирку наклонно в лапке штатива. Конец отводной трубки погружают в другую пробирку - приемник, содержащую 1 мл воды и помещают в стаканчик с водой и льдом. Реакционную смесь осторожно нагревают до кипения до тех пор, пока в приемник не перестанут поступать маслянистые капли, опускающиеся на дно. В случае сильного вспенивания реакционной массы нагревание на короткое время прерывают. По окончании реакции при помощи делительной воронки 2-бромпропан отделяют от воды, собирая его в сухую пробирку или плоскодонную колбу. Для осушения 2-бромпропана добавляют несколько кусочков хлорида кальция. Полученный продукт используют для следующего опыта.

Опыт№2 . Отщепление галогена от галогеналкилов при действии щелочей.

Реактивы : 2-бромпропан (опыт №1), раствор гидроксида натрия, азотная кислота, 1%-ный раствор нитрата серебра.

Оборудование : Делительная воронка, пробирки, лед.

Полученный в опыте №1, 2-бромпропан промывают в делительной воронке дистиллированной водой. Воду сливают, а 2-бромпропан переливают в пробирку, в которую затем добавляют 1-2 мл раствора гидроксида натрия. Смесь нагревают до начала кипения, охлаждают в ледяной бане. В этих условиях происходит щелочной гидролиз галогеналкилов с образованием галогенида натрия. Далее для обнаружения иона галогена небольшую часть смеси подкисляют азотной кислотой и добавляют несколько капель 1%-ного раствора нитрата серебра. Что происходит?

Опыт№3 . Свойства хлороформа (трихлорметана).

Реактивы : хлороформ, 10% раствор гидроксида натрия, раствор иода в иодиде калия, 1%-ный раствор нитрата серебра, 10% раствор аммиака, 20% раствор азотной кислоты;

Оборудование : пробирки, обратные холодильники, стаканы на 100 мл, лед.

3.1. В пробирку наливают 1 мл хлороформа и 1 мл воды. Закрывают пробирку пробкой и интенсивно встряхивают. Через некоторое время образуются два слоя, так как хлороформ практически нерастворим в воде. Пояснить где находится слой органического растворителя, а где вода и почему? А так же почему хлороформ не растворяется в воде?

3.2. В пробирку наливают 1 мл хлороформа и добавляют несколько капель раствора иода в иодиде калия. Смесь интенсивно встряхивают. Через некоторое время нижний слой приобретает розовую окраску. Хлороформ хорошо растворяет иод, при встряхивании иод переходит из водного слоя в хлороформ, окрашивая его в розовый цвет.

3.3. Щелочной гидролиз хлороформа . В пробирку наливают 1 мл хлороформа и 3 мл 10% раствора гидроксида натрия. Пробирку закрывают пробкой с обратным холодильником. Смесь осторожно нагревают до начала кипения, охлаждают в ледяной бане. В этих условиях происходит щелочной гидролиз хлороформа с образованием хлорида натрия и натриевой соли муравьиной кислоты:


Органических веществ анализ (устар.-орг. анализ), качеств. и количеств. определение состава орг. веществ и установление их строения.

При определении качеств. состава орг. веществ используют разнообразные методы, основанные на хим. реакциях, сопровождающихся образованием продуктов с характерными свойствами (цвет, запах, температура и др.), и на измерении физ. и физ.-хим. (хроматографич., спектральных и др.) характеристик идентифицируемых соединений.

При количеств, анализе орг. веществ устанавливают кол-во реагента, вступившего в реакцию с определяемыми орг. соед., или измеряют разл. физ. и физ.-хим. характеристики, связанные с кол-вом определяемого соединения.

органических веществ анализ включает элементный анализ, . структурно-групповой (включая функц. и стереоспецифич.), . и структурный анализ.

Исторически первыми были разработаны способы элементного анализа орг. веществ (А. Лавуазье, кон. 18 в.), основанные на их и гравиметрич., титриметрич. или газометрич. определении образовавшихся простых соед. отдельных элементов. Первые методы элементного (микроанализа) разработал Ф. Прегль в нач. 20 в. Со 2-й пол. 20 в. для элементного анализа веществ широко применяют автоматич. анализаторы, основанные на сожжении анализируемой пробы орг. вещества и газохромато-графич. разделении и определении продуктов сожжения. Анализатор снабжают компьютером и автоматич. системой ввода проб.

Изотопный анализ орг. веществ имеет целью определение в них содержания отдельных . а также определение соотношения одних и тех же орг. соед., содержащих разные изотопы или их сочетания. Для этого чаще всего применяют масс-спектрометрию или многократную газо-жидкостную (напр., при разделении обычных и дейтерир. форм или бензола). Наиб. эффективна хромато-масс-спектрометрия.

Большинство методов функционального анализа основано на взаимод. отдельных функц. групп орг. соед. с подходящими реагентами. Такие реакции бывают избирательными или ограниченно избирательными, т. е. характерны соотв. только для одной или неск. функц. групп.

Чаще всего используют реакции, связанные с образованием или исчезновением кислот, оснований, . . воды, . реже-осадков и окрашенных веществ. Образовавшиеся кислоты и основания определяют кислотно-основным титрованием в водной или неводной среде. В неводной среде возможно раздельное потенциометрич. титрование кислоты и основания разной силы при совместном присутствии.

В случае окислит.-восстановит. реакций, скорость которых невелика, обычно используют обратное титрование, т. е. оттитровывают избыток реагента. На образовании или поглощении в реакциях орг. соед. основано определение мн. функц. групп с помощью Фишера реактива (см. также Акваметрия).

Методы, основанные на реакциях, которые сопровождаются выделением или поглощением газа, используют редко, т. к. измерение объема или обычно требует громоздкой аппаратуры.

На образовании осадков основаны гравиметрич. методы определения небольшого числа функц. групп. Малорастворимые соед., используемые в этих случаях, представляют собой, как правило, металлич. карбоновых и сульфоно-вых кислот, орг. оснований, комплексные соед. (в т.ч. хелатные).

Образование окрашенных соед. часто достаточно специфично и позволяет избирательно определять функц. группы фотометрич. методами. Получили распространение (особенно в микроанализе) реакции, приводящие к образованию флуоресцирующих соед., т. к. чувствительность определения функц. группы в этом случае достаточно велика.

Особой разновидностью функцион. анализа считают методы, основанные на предварит. взаимодействии определяемого вещества с реагентами и определении образовавшегося продукта. Напр., ароматич. после можно определять полярографически, а реакция между аминогруппой и нафталинсульфохлоридом позволяет определять флуориметрически.

Ниже приведены примеры наиб. часто применяемых методов функцион. анализа.

Определение активного водорода в . аминах, амидах, карбоновых и сульфоновых кислотах, и суль-фонамидах основано на их взаимод. с реактивами Гриньяра (обычно с метилмагнийиодидом; см. Церевитинова метод )или с LiAlH 4 и измерении объема выделившегося или водорода соответственно. Активный водород в и его гомологах определяют по реакции с солями Ag(I), Hg(I) или Cu(I) с послед, титриметрич. определением выделившихся кислот.

Соединения с ненасыщ. углерод-углеродными связями чаще всего бромируют, иодируют или гидрируют. В первых двух случаях непрореагировавший Вг 2 или I 2 определяют иодометрически, а при измеряют объем поглощенного Н 2 . Число двойных связей можно установить по реакции присоединения солей с послед. титрованием выделившейся кислоты.

При определении гидроксильных групп чаще всего применяют с помощью уксусного, фталевого или пиромеллитового ангидрида, избыток которого оттитровывают. Можно использовать хлорангидриды кислот. Гидрокси-группы в обычно титруют растворами основании в неводной среде. Фенолы легко бромируются и сочетаются с . поэтому фенолы оттитровывают растворами Вг 2 или солей диазония либо приливают к исследуемому раствору бромид-броматную смесь, избыток которой устанавливают иодометрически (см. также Фалина реакция).

Определение эпоксигрупп основано на их реакции с с образованием хлоргидринов; по завершении реакции избыток НСl оттитровывают раствором щелочи.

Для определения карбонильных соед. (альдегидов и кето-нов) наиб. часто применяют оксимирование, т. е. их превращение в при взаимод. с гидрохлоридом гидроксил-амина; выделившийся в результате реакции НСl оттитровывают раствором (конечную точку титрования устанавливают с помощью или потенциометрически). Существует большое число модификаций этого метода. можно определять также по реакции с бисульфитом Na с послед. кислотно-основным титрованием. Реже используют окисление альдегидов Ag + , реакцию с и образование оснований Шиффа.

Широкое применение при определении аминов находит титрование растворами кислот (обычно НСlО 4) в неводной среде. Этот метод часто позволяет раздельно определять орг. и неорг. основания в смесях, а также орг. основания разной силы при совместном присутствии. Амины можно определять, как и гидроксипроизводные, по реакции их ацилирования. Для определения первичных ароматич. аминов часто используют титрование раствором в кислой среде, сопровождающееся образованием диазосоединения. Аналогичное титрование вторичных аминов приводит к их N-нитрозированию и также применяется в анализе. При микроанализе первичных ароматич. аминов образовавшиеся диазосоединения обычно подвергают сочетанию с соответствующими азосоставляющими и определяют образовавшийся краситель спектрофотометрически. В случае анализа смесей первичных, вторичных и третичных аминов чаще всего применяют титрование раствором НСlO 4 в неводной среде исходной смеси (титруются все амины), смеси после ацетилирования уксусным ангидридом (титруются только третичные амины) и смеси после обработки ацетилацетоном или салициловым альдегидом (титруется сумма вторичных и третичных аминов).

Для определения солей арилдиазония раствором анализируемого вещества титруют навески азосоставляющей (З-метил-1-фенил-5-пиразолона, м -фенилендиамина и др.) или прибавляют к анализируемому раствору раствор азосоставляющей, избыток которой оттитровывают раствором NaNO 2 в кислой среде. В случае анализа диазосоединений возможно также применение газометрич. анализа, основанного на разложении исследуемого соед. с выделением N 2 , объем которого измеряют. Иногда, как и в случае анализа аминов, диазосоединения определяют по реакции сочетания с послед. спектрофотометрич. определением образовавшегося красителя.

Гидразины и тиолы обычно оттитровывают иодометрически. В случае тиолов можно использовать также взаимод. их с солями серебра или кислотно-основное титрование. Орг. сульфиды окисляют бромид-броматной смесью, избыток которой определяют титриметрически.

Широкое распространение для качеств. и количеств. функцион. анализа получили также избирательные и достаточно чувствительные методы ИК спектроскопии и ЯМР.

Возникновение стереоспецифического анализа орг. веществ во 2-й пол. 20 в. связано с развитием хроматографич. методов. Для разделения энантиомеров чаще всего предварительно проводят реакцию между анализируемыми веществами и оптически активными реагентами с образованием диастереомеров, которые затем разделяют методами газо-жидкост-ной или высокоэффективной жидкостной хроматографии на колонках с оптически активными неподвижными фазами.

Молекулярный анализ орг. веществ основан главным образом на применении хроматографии и разл. спектральных методов, которые позволяют устанавливать строение орг. соединений.

Фазовый анализ, позволяющий качественно и количественно анализировать кристаллич. формы орг. соед., проводят с помощью рентгенографии и электронографии. Рентгеновский, позволяет устанавливать с высокой точностью структурную ф-лу орг. вещества, определить длины связей между атомами и углы между связями.

Перечисленные выше методы анализа основаны на прямом определении анализируемых веществ или полученных из них производных. В органических веществ анализе часто применяют также косвенные методы. Так, например, карбоновые кислоты можно выделить из анализируемой смеси в виде труднорастворимых серебряных или др. солей и затем методом атомно-абсорбц. спектроскопии или рентгено-флуоресцентного анализа определить кол-во соответствующего металла; по результатам такого анализа можно рассчитать содержание карбоновой кислоты. В жидкостной хроматографии эффективно использование косвенного детектирования разделяемых веществ, при котором к подвижной фазе прибавляют активный компонент, образующий с продуктами разделения или с хроматографируемыми веществами легко детектируемые соединения.

Приемы анализа и используемая аппаратура зависят от конкретной задачи О. в. а.: определение основного вещества смеси, орг. или неорг. примеси в орг. веществах, орг. примеси в неорг. веществе или анализ сложной многокомпонентной смеси веществ.

Методы О. в. а. широко используют при разработке технологии пром. произ-ва орг. продуктов и в процессе самого произ-ва для разработки методик анализа сырья, вспомогат. веществ, промежут. продуктов на разных стадиях произ-ва, для контроля производств. процесса, готовой продукции, сточных вод и .х выбросов, для примесей в промежуточных и конечных продуктах, а также для разработки аналит. методик, обеспечивающих проведение необходимых кинетич. исследований. Во всех случаях необходимо выбирать оптим. варианты методов анализа и их сочетания в соответствии с требованиями к экспрессности, воспроизводимости, точности и т.п.

ОРГАНИЧЕСКИХ ВЕЩЕСТВ АНАЛИЗ

(устар.-орг. анализ), качеств. и количеств. определение состава орг. в-в и установление их строения.

При определении качеств. состава орг. в-в используют разнообразные методы, основанные на хим. р-циях, сопровождающихся образованием продуктов с характерными св-вами (цвет, запах, т-ра плавления и др.), и на измерении физ. и физ.-хим. (хроматографич., спектральных и др.) характеристик идентифицируемых соединений.

При количеств, анализе орг. в-в устанавливают кол-во реагента, вступившего в р-цию с определяемыми орг. соед., или измеряют разл. физ. и физ.-хим. характеристики, связанные с кол-вом определяемого соединения.

О. в. а. включает элементный анализ, структурно-групповой (включая функц. и стереоспецифич.), молекулярный анализ, фазовый анализ и структурный анализ.

Исторически первыми были разработаны способы элементного анализа орг. в-в (А. Лавуазье, кон. 18 в.), основанные на их окислении и гравиметрич., титриметрич. или газометрич. определении образовавшихся простых соед. отдельных элементов. Первые методы элементного микрохимического анализа (микроанализа) разработал Ф. Прегль в нач. 20 в. Со 2-й пол. 20 в. для элементного анализа в-в широко применяют автоматич. анализаторы, основанные на сожжении анализируемой пробы орг. в-ва и газохромато-графич. разделении и определении продуктов сожжения. Анализатор снабжают компьютером и автоматич. системой ввода проб.

Изотопный анализ орг. в-в имеет целью определение в них содержания отдельных изотопов, а также определение соотношения одних и тех же орг. соед., содержащих разные или их сочетания. Для этого чаще всего применяют масс-спектрометрию или многократную газо-жидкостную хроматографию (напр., при разделении обычных и дейте-рир. форм метана или бензола). Наиб. эффективна хромато-масс-спектрометрия.

Большинство методов функционального анализа основано на взаимод. отдельных функц. групп орг. соед. с подходящими реагентами. Такие р-ции бывают избирательными или ограниченно избирательными, т. е. характерны соотв. только для одной или неск. функц. групп.

Чаще всего используют р-ции, связанные с образованием или исчезновением к-т, оснований, окислителей, восстановителей, воды, газов, реже-осадков и окрашенных в-в. Образовавшиеся к-ты и основания определяют кислотно-основным титрованием в водной или неводной среде. В неводной среде возможно раздельное потенциометрич. титрование к-ты и основания разной силы при совместном присутствии.

В случае окислит.-восстановит. р-ций, скорость к-рых невелика, обычно используют обратное титрование, т. е. оттитровывают избыток реагента. На образовании или поглощении воды в р-циях орг. соед. основано определение мн. функц. групп с помощью Фишера реактива (см. также Акваметрия).

Методы, основанные на р-циях, к-рые сопровождаются выделением или поглощением газа, используют редко, т. к. измерение объема или давления обычно требует громоздкой аппаратуры.

На образовании осадков основаны гравиметрич. методы определения небольшого числа функц. групп. Малорастворимые соед., используемые в этих случаях, представляют собой, как правило, металлич. карбоновых и сульфоно-вых к-т, соли орг. оснований, комплексные соед. (в т. ч. хелатные).

Образование окрашенных соед. часто достаточно специфично и позволяет избирательно определять функц. группы фотометрич. методами. Получили распространение (особенно в микроанализе) р-ции, приводящие к образованию флуоресцирующих соед., т. к. чувствительность определения функц. группы в этом случае достаточно велика.

Особой разновидностью функцион. анализа считают методы, основанные на предварит. взаимодействии определяемого в-ва с реагентами и определении образовавшегося продукта. Напр., ароматич. после нитрования можно определять полярографически, а р-ция между аминогруппой и нафталинсульфохлоридом позволяет определять флуориметрически.

Ниже приведены примеры наиб. часто применяемых методов функцион. анализа.

Определение активного водорода в спиртах, аминах, амидах, карбоновых и сульфоновых к-тах, меркаптанах и суль-фонамидах основано на их взаимод. с реактивами Гриньяра (обычно с метилмагнийиодидом; см. Церевитинова метод )или с LiAlH 4 и измерении объема выделившегося метана или водорода соответственно. Активный в ацетилене и его гомологах определяют по р-ции с солями Ag(I), Hg(I) или Cu(I) с послед, титриметрич. определением выделившихся к-т.

Соединения с ненасыщ. углерод-углеродными связями чаще всего бромируют, иодируют или гидрируют. В первых двух случаях непрореагировавший Вг 2 или I 2 определяют иодометрически, а при гидрировании измеряют объем поглощенного Н 2 . Число двойных связей можно установить по р-ции присоединения солей ртути с послед. титрованием выделившейся к-ты.

При определении гидроксильных групп чаще всего применяют с помощью уксусного, фталевого или пиромеллитового ангидрида, избыток к-рого оттитровывают. Можно использовать хлорангидриды к-т. Гидрокси-группы в фенолах обычно титруют р-рами основании в неводной среде. Фенолы легко бромируются и сочетаются с солями диазония, поэтому оттитровывают р-рами Вг 2 или солей диазония либо приливают к исследуемому р-ру бромид-броматную смесь, избыток к-рой устанавливают иодометрически (см. также Фалина реакция).

Углеводы можно определять окислением периодатом натрия и послед. титрованием избытка окислителя или образующихся к-т. Разработаны многочисл. разновидности этого метода (см., напр., Малапрада реакция).

Для определения орг. пероксисоединений (в т. ч. перокси-кислот) чаще всего используют их взаимод. с KI и послед. титрование выделившегося I 2 р-ром Na 2 S 2 O 3 .

Анализ алкоксисоединений заключается во взаимод. анализируемого в-ва с иодистоводородной к-той с образованием алкилиодидов (см. Цейзеля метод). Последние определяют разными методами - гравиметрически (в виде AgI) или титриметрически ( , кислотно-основное титрование). Аналогично можно определять и карбоновых к-т. Для идентификации С 1 -С 4 -алкоксигрупп образующиеся алкилиодиды превращают в четвертичные аммониевые соед., к-рые анализируют методами тонкослойной или бумажной хроматографии.

Определение эпоксигрупп основано на их р-ции с хлористым водородом с образованием хлоргидринов; по завершении р-ции избыток НСl оттитровывают р-ром щелочи.

Для определения карбонильных соед. (альдегидов и кето-нов) наиб. часто применяют оксимирование, т. е. их превращение в при взаимод. с гидрохлоридом гидроксил-амина; выделившийся в результате р-ции НСl оттитровывают р-ром щелочи (конечную точку титрования устанавливают с помощью индикатора или потенциометрически). Существует большое число модификаций этого метода. Альдегиды можно определять также по р-ции с бисульфитом Na с послед. кислотно-основным титрованием. Реже используют альдегидов ионами Ag + , р-цию с гидразинами и образование оснований Шиффа.

Хиноны восстанавливают хлоридом Ti(III) или сульфатом V(II); избыток восстановителя определяют титриметрически. Хиноны можно определять также иодометрически.

Для определения карбоновых к-т и их солей наиб. часто применяют кислотно-основное титрование в неводных средах.

Для анализа производных карбоновых к-т разработано большое число методов. Ангидриды после их гидролиза до к-т титруют р-рами щелочей. В случае анализа смеси к-ты и ее ангидрида кислотно-основным титрованием определяют сумму обоих в-в, а затем проводят р-цию ангидрида с морфолином или анилином и оттитровывают выделившиеся к-ты. В последнем случае можно также определять избыток основания титрованием р-ром НСl. Аналогично определяют галогенангидриды или их смеси с к-тами. При этом вместо р-ции с аминами часто используют взаимод. галогенангидрида со спиртом с послед. раздельным титрованием своб. карбоновой к-ты и выделившейся галогеново-дородной к-ты р-ром щелочи.

Определение сложных эфиров карбоновых к-т основано на их гидролизе р-ром щелочи, избыток к-рой оттитровывают р-ром к-ты. Малые кол-ва сложных эфиров обычно определяют спектрофотометрически в виде Fе(Ш)-солей гидрокса-мовых к-т, образующихся при взаимод. сложных эфиров с гидроксиламином.

Для определения азотсодержащих орг. в-в предложено большое число методов. Соед., способные восстанавливаться (нитро-, нитрозо-, ), определяют титано- или ванадатометрически: добавляют избыток р-ра соли Ti(III) или V(II) и непрореагировавший восстановитель от-титровывают р-ром соли Fe(III).

Широкое применение при определении находит титрование р-рами к-т (обычно НСlО 4) в неводной среде. Этот метод часто позволяет раздельно определять орг. и неорг. основания в смесях, а также орг. основания разной силы при совместном присутствии. Амины можно определять, как и гидроксипроизводные, по р-ции их ацилирова-ния. Для определения первичных ароматич. аминов часто используют титрование р-ром в кислой среде, сопровождающееся образованием диазосоединения. Аналогичное титрование вторичных аминов приводит к их N-нитрозирова-нию и также применяется в анализе. При микроанализе первичных ароматич. аминов образовавшиеся диазосоединения обычно подвергают сочетанию с соответствующими азосоставляющими и определяют образовавшийся краситель спектрофотометрически. В случае анализа смесей первичных, вторичных и третичных аминов чаще всего применяют титрование р-ром НСlO 4 в неводной среде исходной смеси (титруются все амины), смеси после ацетилирования уксусным ангидридом (титруются только третичные амины) и смеси после обработки ацетилацетоном или салициловым альдегидом (титруется сумма вторичных и третичных аминов).

Для определения солей арилдиазония р-ром анализируе-мого в-ва титруют навески азосоставляющей (З-метил-1-фенил-5-пиразолона, м-фенилендиамина и др.) или прибавляют к анализируемому р-ру р-р азосоставляющей, избыток к-рой оттитровывают р-ром NaNO 2 в кислой среде. В случае анализа диазосоединений возможно также применение газометрич. анализа, основанного на разложении исследуемого соед. с выделением N 2 , объем к-рого измеряют. Иногда, как и в случае анализа аминов, диазосоединения определяют по р-ции сочетания с послед. спектрофотомет-рич. определением образовавшегося красителя.

Гидразины и обычно оттитровывают иодометри-чески. В случае тиолов можно использовать также взаимод. их с солями серебра или кислотно-основное титрование. Орг. сульфиды окисляют бромид-броматной смесью, избыток к-рой определяют титриметрически.

Широкое распространение для качеств. и количеств. функ-цион. анализа получили также избирательные и достаточно чувствительные методы ИК спектроскопии и ЯМР.

Возникновение стереоспецифического анализа орг. в-в во 2-й пол. 20 в. связано с развитием хроматографич. методов. Для разделения энантиомеров чаще всего предварительно проводят р-цию между анализируемыми в-вами и оптически активными реагентами с образованием диасте-реомеров, к-рые затем разделяют методами газо-жидкост-ной или высокоэффективной жидкостной хроматографии на колонках с оптически активными неподвижными фазами.

Молекулярный анализ орг. в-в основан гл. обр. на применении хроматографии и разл. спектральных методов, к-рые позволяют устанавливать строение орг. соединений.

Фазовый анализ, позволяющий качественно и количественно анализировать кристаллич. формы орг. соед., проводят с помощью рентгенографии и электронографии. Рентгеновский, структурный анализ позволяет устанавливать с высокой точностью структурную ф-лу орг. в-ва, определить длины связей между атомами и углы между связями.

Перечисленные выше методы анализа основаны на прямом определении анализируемых в-в или полученных из них производных. В О. в. а. часто применяют также косвенные методы. Так, напр., карбоновые к-ты можно выделить из анализируемой смеси в виде труднорастворимых серебряных или др. солей и затем методом атомно-абсорбц. спектроскопии или рентгено-флуоресцентного анализа определить кол-во соответствующего металла; по результатам такого анализа можно рассчитать содержание карбоновой к-ты. В жидкостной хроматографии эффективно использование косвенного детектирования разделяемых в-в, при к-ром к подвижной фазе прибавляют активный компонент, образующий с продуктами разделения или с хроматографируе-мыми в-вами легко детектируемые соединения.

Приемы анализа и используемая аппаратура зависят от конкретной задачи О. в. а.: определение основного в-ва смеси, орг. или неорг. примеси в орг. в-вах, орг. примеси в неорг. в-ве или анализ сложной многокомпонентной смеси в-в.

Методы О. в. а. широко используют при разработке технологии пром. произ-ва орг. продуктов и в процессе самого произ-ва для разработки методик анализа сырья, вспомогат. в-в, промежут. продуктов на разных стадиях произ-ва, для контроля производств. процесса, готовой продукции, сточных вод и газовых выбросов, для идентификации примесей в промежуточных и конечных продуктах, а также для разработки аналит. методик, обеспечивающих проведение необходимых кинетич. исследований. Во всех случаях необходимо выбирать оптим. варианты методов анализа и их сочетания в соответствии с требованиями к экспрессности, воспроизводимости, точности и т. п.

При разработке аналит. части нормативно-техн. документации на сырье, вспомогат. материалы и готовую продукцию прежде всего устанавливают минимально необходимое и достаточное число аналит. показателей. К таким показателям относят т-ру плавления, р-римость, содержание осн. в-ва в продукте, к-рое определяют прямым методом (обычно титриметрически с применением потенциометрии) или косвенно, вычитая из массы всего продукта массу примесей, определяемых хроматографич. (чаще всего), электрохим. или спектрофотометрич. методами. При использовании функцион. анализа для определения осн. в-ва обычно выбирают методику, предусматривающую определение этого в-ва по функц. группе, образовавшейся на последней стадии его получения. При необходимости, когда анализируемое в-во получают многостадийным синтезом, его определяют по разным функц. группам. Аналит. методы, выбираемые для анализа сырья и готовой продукции, обязательно должны обладать гл. обр. хорошей воспроизводимостью и точностью.

Методы анализа, применяемые в контроле произ-ва, должны быть экспрессными и непрерывными (напр., редокс-метрия, рН-метрия, ). В основе методик контроля процессов произ-ва орг. в-в часто лежит определение исчезающей функц. группы, т. е. группы, подвергающейся превращению на данной стадии произ-ва, что позволяет точно фиксировать конец соответствующей стадии. При этом широко используют тонкослойную, газо-жид-костную, высокоэффективную жидкостную хроматографию, спектрофотометрию, электрохим. методы, проточно-ин-жекц. анализ.

Для анализа промежут. продуктов произ-ва чаще всего применяют титриметрию, а для анализа реакц. смесей-комплекс хроматографич. и спектральных методов, в т. ч. хромато-масс-спектрометрию, сочетание газовой хроматографии с ИК фурье-спектроскопией.

Большое значение приобрел анализ объектов окружающей среды. При разработке соответствующих методик анализа осн. требования к ним заключаются в высокой чувствительности и правильности идентификации определяемых в-в. Этим требованиям удовлетворяют хромато-масс-спектрометрия с использованием двух и более неподвижных фаз.

В клинич. анализе (анализ крови, мочи, тканей и др. объектов на содержание лек. в-в, метаболитов, стероидов, аминокислот и т. п.) важным является не только чувствительность, точность и экспрессность анализа, но и воспроизводимость его результатов. Когда последнее требование имеет решающее значение, применяют хромато-масс-спектрометрию в стандартных условиях, а также высокопроизводительный проточно-инжекц. анализ и разнообразные ферментные методы, обладающие высокой селективностью.

Лит.: Губен Вейль, Методы органической химии, т. 2, Методы анализа, пер. с нем. 4 изд., М.. 1963; Черонис Н. Д., Ма Т. С., Микро- и полумикро-методы органического функционального анализа, пер. с англ., М., 1973; Сиггиа С.. Ханна Дж. Г., Количественный органический анализ по функциональным группам, пер. с англ., М. ; 1983. Б. Я. Колоколов.


Химическая энциклопедия. - М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Смотреть что такое "ОРГАНИЧЕСКИХ ВЕЩЕСТВ АНАЛИЗ" в других словарях:

    Анализ воды метод исследования свойств и качеств воды. Применяется для определения количества различных веществ в составе воды, находящейся в контакте с человеком в промышленных и бытовых целях, либо в научных. Содержание 1 Типы воды для… … Википедия

    Анализ почвы совокупность операций, выполняемых с целью определения состава, физико механических, физико химических, химических, агрохимических и биологических свойств почвы. Проводят механический (гранулометрический), химический,… … Википедия

    АНАЛИЗ ВОДЫ - производится с целью выяснения качества воды и определения возможности использования ее для снабжения рыбоводных прудов. А. в. проводится четыре раза в год: весной (в период весеннего половодья), в середине лета (июль), осенью (в период осеннего… … Прудовое рыбоводство

    анализ - АНАЛИЗ (от греч. analysis разложение, расчленение) процедура реального или мысленного расчленения предмета, явления или процесса, а также их взаимоотношений на составные части, элементы, свойства, функции и подсистемы. Процедурой,… … Энциклопедия эпистемологии и философии науки

    Идентификация (обнаружение) компонентов анализируемых в в и приблизительная количеств, оценка их содержания в в вах и материалах. В качестве компонентов м. б. атомы и ионы, изотопы элементов и отдельные нуклиды, молекулы, функц. группы и радикалы … Химическая энциклопедия

    Определение содержания (массы, концентрации и т. п.) или количеств. соотношений компонентов в анализируемом образце. Определяемыми компонентами м. б. атомы, молекулы, изотопы, функц. группы, фазы и т. п. (см. Элементный анализ, Молекулярный… … Химическая энциклопедия

Транскрипт

1 ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ Методические указания для вузов Издательско-полиграфический центр Воронежского государственного университета 2008

2 Утверждено научно-методическим советом химического факультета 7 февраля 2008 г., протокол 3 Составители: С.И. Карпов, В.Ф. Селеменев, М.В. Матвеева, Н.А. Беланова Рецензент д-р хим. наук, профессор Г.В. Шаталин В методических указаниях представлены теоретические основы качественного и количественного определения органических веществ с использованием физико-химических методов анализа: хроматографии (ГЖХ, ВЭЖХ, ТСХ), спектральных методов (спектрофотометрии, ИК-спектроскопии); рассмотрены некоторые теоретические аспекты хроматографии, касающиеся основных параметров удерживания и эффективности разделения компонентов анализируемой смеси. Основное внимание уделяется описанию выполнения лабораторных работ, посвященных рассмотрению приемов и методов идентификации, качественному и количественному анализу органических веществ методами ГЖХ, ВЭЖХ, ТСХ, спектрофотометрией (УФ-, вид-), ИК-спектроскопией. Учебно-методическое пособие предназначено для студентов 5 курса вечернего отделения химического факультета и составлено в соответствии с программой спецкурса «Физико-химические методы анализа органических соединений», читаемого на кафедре аналитической химии Воронежского государственного университета. Для специальности: Химия 2

3 СОДЕРЖАНИЕ Введение Хроматографические методы анализа Классификация хроматографических методов Колоночная хроматография Теоретические основы газовой хроматографии Теоретические основы высокоэффективной жидкостной хроматографии (ВЭЖХ) Параметры удерживания и основные характеристики разделения веществ в колоночной газовой и жидкостной хроматографии Плоскостная хроматография Стадии хроматографического процесса, материалы и реагенты, применяемые в плоскостной хроматографии Основные характеристики разделения веществ в плоскостной хроматографии Спектральные методы анализа Спектральные параметры полосы поглощения Молекулярная абсорбционная спектроскопия в видимой и УФ-области электромагнитных излучений Характеристика спектрофотометрического определения Оптимальные условия фотометрического определения Количественный анализ абсорбционными методами Инфракрасная спектроскопия Некоторые характеристики молекулярных спектров Колебания двухатомной молекулы Групповые частоты и интерпретация спектра Практическая часть Работа 1. Нанесение неподвижной жидкой фазы на твердый носитель и заполнение колонки Работа 2. Определение оптимальной скорости потока газаносителя Работа 3. Определение содержания примесей в толуоле Работа 4. Идентификация органических соединений по индексам Ковача Работа 5. Определение микроколичеств ацетона в водопроводной воде Работа 6. Получение изотерм сорбции спиртов методом Глюкауфа

4 Работа 7. Качественное и количественное определение примесей салициловой кислоты в ацетилсалициловой кислоте (аспирине) методом обращено-фазовой ВЭЖХ Работа 8. Разделение и идентификация дикарбоновых кислот методом ТСХ в водно-органических подвижных фазах Работа 9. Определение содержания примесей в препаратах лекарственных веществ по данным ТСХ Работа 10. Качественное и количественное определение флавоноидов методом ТСХ Работа 11. Спектрофотометрическое определение содержания никотиновой кислоты в препарате Работа 12. Спектрофотометрическое определение содержания цианкобаламина для инъекций (витамина В12) Работа 13. Определение подлинности веществ по ИКспектрам образцов, диспергированных в бромиде калия Работа 14. Идентификация веществ по ИК-спектрам образцов в виде суспензии в вазелиновом масле Работа 15. Количественный анализ смеси изомеров ксилола по ИК-спектрам Список использованной литературы

5 ВВЕДЕНИЕ Использование физических явлений занимает одно из ведущих мест в анализе химических систем. Сегодня каждый, кто связан с химией или изучает состав вещества, обязан хорошо ориентироваться в физикохимических методах анализа. Можно выделить ряд методов, используемых в аналитической химии. Хроматографические, спектральные методы используют в большинстве научно-исследовательских лабораторий контроля качества производства. Следует отметить огромный интерес и практическое применение этих методов в различных областях деятельности человека и протекания хроматографических и оптических процессов в природе. Достаточно лишь перечислить области применения: анализ загрязнений окружающей среды, анализ пищи, лекарств, клинический анализ, токсикологическое и судебное применение и др. Место хроматографии в области молекулярного анализа органических соединений. Хроматография преобладает над другими методами разделения, не заменяя их. Об этом свидетельствуют данные проведенного в США опроса об использовании различных аналитических приборов в 3000 исследовательских центрах . Хроматографические приборы занимают одно из первых мест как по степени использования, так и по росту потребности в них. Однако проведение любого хроматографического анализа часто сопряжено с другими физико-химическими методами анализа. Оптические методы позволяют проводить качественное и количественное определение вещества. Для всестороннего анализа вещества на подлинность, наличие примесей количественное определение предполагает применение различных физико-химических методов. Чтобы охарактеризовать любое химическое соединение, необходимо знать его оптические свойства, способность к распределению и адсорбции на различных материалах, а также возможность его выделения. Следует подчеркнуть, что хроматографические, оптические методы (спектрофотометрия (УФ-, вид-), ИК-спектроскопия и др.) не конкурируют между собой, а гармонично дополняют друг друга. 1. ХРОМАТОГРАФИЧЕСКИЕ МЕТОДЫ АНАЛИЗА В 2003 г. исполнилось 100 лет с момента открытия одного из наиболее плодотворных методов исследования состава сложных многокомпонентных смесей веществ хроматографии. Это открытие принадлежит русскому ботанику М.С. Цвету, который впервые не ограничился простым наблюдением явлений адсорбции растительных пигментов на порошкообразных адсорбентах, но понял, что в этих простых опытах перед ним приоткрылась завеса неизвестности, за которой поистине необозримые возможности изучения состава и свойств самых разнообразных веществ. 5

6 Впервые термины «хроматографический метод» и «хроматограмма» появляются в двух статьях М.С. Цвета в 1906 г., что же касается термина «хроматография», то мы находим его в публикациях того же года . «Хроматография (от греч. хроматос цвет) физический метод разделения, в котором разделяемые компоненты распределены между двумя фазами, одна из которых неподвижна (неподвижная фаза), в то время как другая (подвижная фаза) движется в определенном направлении» (терминология ИЮПАК, 1993 г. ). Однако хроматография является не только «физическим методом разделения». Хроматографию можно определить как науку о методах разделения, а также качественного и количественного определения компонентов жидких и газообразных смесей, основанных на их различной сорбции (адсорбции, распределении и др.) в динамических условиях. Динамические условия в простейшем случае создаются при движении анализируемой смеси компонентов (подвижная фаза) через слой сорбента (неподвижная фаза). Неподвижной фазой (НФ) в хроматографии могут быть твердые и жидкие сорбенты. Подвижной фазой (ПФ) газ или жидкость, проходящие через хроматографическую колонку Классификация хроматографических методов 1. По агрегатному состоянию фаз. Газовая хроматография подвижная фаза (ПФ) является газом; газотвердофазная (неподвижная фаза (НФ) твердое вещество), газожидкостная хроматография (неподвижная фаза жидкость). Жидкостная хроматография подвижная фаза жидкость; жидкость твердофазная хроматография (неподвижная фаза твердый сорбент), жидкость жидкостная хроматография (неподвижная фаза жидкость). 2. По форме неподвижной фазы. Колоночная хроматография (КХ). Планарная хроматография неподвижная фаза нанесена на плоскость (бумажная хром. (БХ)), хроматография в тонких слоях (ТСХ). 3. По механизму сорбции. Адсорбционная поглощение твердым сорбентом за счет сил межмолекулярного взаимодействия. Распределительная различная растворимость в подвижной и неподвижной фазах. Ионообменная различия в электростатическом взаимодействии ионов с ионогенными группами сорбентов. Осадочная различие в растворимости разделяемых веществ. Лигандообменная различие в способности образовывать координационные соединения с определяемым компонентом. 6

7 Эксклюзионная разделение, основанное на различии в размерах и формах молекул. 4. По способам проведения хроматографического процесса. Фронтальная, вытеснительная, элюентная Колоночная хроматография Теоретические основы газовой хроматографии Газовая хроматография (ГХ) метод разделения летучих соединений. Подвижной фазой в газовой хроматографии является газ или пар. В зависимости от состояния неподвижной фазы газовая хроматография подразделяется на газоадсорбционную, когда неподвижной фазой является твердый адсорбент, и газожидкостную, когда неподвижной фазой является жидкость, а точнее пленка жидкости на поверхности частиц твердого сорбента. Газохроматографическими методами могут быть проанализированы газообразные, жидкие и твердые вещества с молекулярной массой меньше 400, удовлетворяющие определенным требованиям: летучесть, термостабильность, инертность. Газовая хроматография один из самых современных методов многокомпонентного анализа. Его преимущества: экспрессность, высокая точность, чувствительность, автоматизация. ГХ относится к инструментальным методам анализа, так как для определения состава газовой фазы необходима не только хроматографическая система, но и достаточно сложная система термостатирования, детектирования. Блок-схема хроматографа приведена на рис Рис. 1.1 Рис Т термостатируемые зоны 1. Система подачи газа-носителя (подвижная фаза). Чаще всего это газовый баллон с инертным газом гелием, аргоном, азотом. 2. Дозатор-система ввода пробы. Представляет собой термостатированный испаритель, в который микрошприцем, шприцем или другим калиброванным устройством вводится заданный точный объем исследуемой смеси. Жидкие вещества, испаряясь, переходят в газообразную фазу, захватываются потоком газа-носителя и поступают в колонку (3). 7

8 3. Хроматографическая колонка стеклянная или металлическая трубка диаметром от 2 до 4 мм и длиной от 0,5 до 10 м, заполненная сорбентом (насадочная колонка). Наряду с насадочными, используются микронасадочные (диаметр 0,8 1,5 мм) и капиллярные (диаметр 0,1 0,8 мм) колонки длиной до 100 м. В колонке происходит разделение компонентов смеси. Поскольку на сорбируемость веществ очень сильно влияет температура, колонки термостатируют. 4. Детектор устройство, предназначенное для обнаружения изменений в составе газа, прошедшего через колонку. Показания детектора обычно преобразуются в электрический сигнал и передаются на регистрирующее устройство. Наиболее часто применяют детектор по теплопроводности (катарометр) и пламенно-ионизационный (ДИП), термо-ионизационный (ТИД), детектор электронного захвата (ЭЗД). Для регистрации стабильных, воспроизводимых результатов детектор термостатируют. 5. Регистратор прибор, фиксирующий или записывающий электрический сигнал, поступивший с детектора. Чаще всего в качестве регистратора применяют самописец или интегратор, в современных модификациях приборов ЭВМ. Методом ГХ проводят качественный и количественный анализ, более подробно рассмотренный в работах Теоретические основы высокоэффективной жидкостной хроматографии (ВЭЖХ) Высокоэффективная жидкостная хроматография (ВЭЖХ) колоночная или планарная жидкостная хроматография, в которой применяют сорбенты с размером частиц 3 10 мкм, в результате чего резко возрастает эффективность хроматографического разделения. По полярности контактирующих фаз жидкостную хроматографию (как колоночную, так и планарную) условно разделяют на нормальнофазовую (НФХ) и обращенно-фазовую хроматографию (ОФХ). Нормально-фазовая хроматография жидкостная хроматография, в которой неподвижная фаза более полярна, чем подвижная. К такому варианту хроматографии относится жидкостно-адсорбционная хроматография с силикагелем и оксидом алюминия в качестве НФ. Также к НФХ можно отнести распределительный вариант ВЭЖХ, в котором разделение смеси на компоненты осуществляется за счет различия их коэффициентов распределения между двумя несмешивающимися фазами растворителем (подвижной фазой) и фазой на сорбенте (неподвижной фазой). Обращенно-фазовая хроматография жидкостная хроматография, в которой неподвижная фаза менее полярная, чем подвижная. Это вариант распределительной хроматографии, в котором используют сорбенты с привитыми неполярными (как правило, длинными алкильными или алкил- 8

9 силильными) группами и полярный растворитель (например, воднометанольные, водно-ацетонитрильные смеси). В ВЭЖХ порядка 70 % всех аналитических разделений проводят методом обращенно-фазовой хроматографии. Работа в режиме ОФХ характеризуется использованием неполярного сорбента и полярного элюента. Сорбентами являются силикагели с привитыми алкилсилильными группами различной длины (от С 2 до С 22) с прямой алкильной группой или с фенильными и дифенильными группами. Подвижные фазы (ацетонитрил, вода, спирты и их смеси), используемые в ОФХ, позволяют проводить детектирование в широком УФ-диапазоне, легко растворяют практически все важнейшие соединения, входящие в состав биологических объектов, лекарственных веществ и т. д. Широкое применение находит ОФ ВЭЖХ при определении чистоты лекарственных препаратов, этому и посвящена работа Параметры удерживания и основные характеристики разделения веществ в колоночной газовой и жидкостной хроматографии Хроматограмма (рис. 1.2) кривая, отображающая зависимость концентрации вещества в потоке ПФ на выходе из колонки, от времени с момента начала процесса (выходная кривая). Чаще пользуются элюентным (проявительным) методом. Выходная кривая представляется в форме пика (для одного вещества). Экспериментально измеряемыми в газовой и жидкостной хроматографии являются параметры , представленные на рис а) б) Рис Параметры удерживания веществ (а) и параметры хроматографического пика (б) в колоночной хроматографии t m время прохождения несорбируемого компонента (мертвое время). t R полное время удерживания компонентов это время от момента ввода 9

10 пробы до момента появления на выходе из колонки максимальной концентрации зоны соответствующего вещества. t" Ri = t Ri t m. (1) исправленное (приведенное) время удерживания. Ширина пика (W) длина сегмента, образованного нулевой линией и двумя касательными в точках перегиба пика между двумя точками пересечения касательных в точке перегиба с нулевой линией. Высотой пика считают либо величину h либо h". Удерживаемый объем V R пропорционален времени удерживания t R: V R = t U, где U объемная скорость ПФ. Исправленный (приведенный) объем V" R удерживания R V" R = V R V m, где V m объем подвижной фазы, необходимой для элюирования неудерживаемого вещества, или мертвый объем. Фактор удерживания (или коэффициент емкости) k i представляет собой отношение количеств компонента i в неподвижной (m i, s) и подвижной (m i,m) фазах, который связан с характеристиками удерживания k i =t R "/t m Отсюда или k i t R m =. 10 t t t Ri = (1+k i)t m. (2) Это основное уравнение, характеризующее удерживание в хроматографии. Как видно из уравнений (1, 2), фактор удерживания можно определить из данных хроматограммы. В практике газовой и жидкостной хроматографии удерживание двух соединений последовательно регистрируемых на хроматограмме характеризуют фактором разделения (α): " " " V R t (2) R l (2) R k (2) (2) α = = = = " " " V t l k. (3) R (1) R (1) Фактор разделения α иногда называют селективностью. Численное значение α всегда больше единицы. Однако α не описывает действительного разделения двух хроматографических пиков. Существуют два параметра это расстояние между пиками и их ширина. Они определяют, полностью ли разрешены (разделены) два хроматографических пика. Расстояние между пиками можно выразить как разность времен удерживания (Δt R), а ширину пика у его основания W определяют как расстояние между каса- m R (1) (1)

11 тельными к направляющим пиков (рис. 1.2б). Разрешение (R S) двух пиков определяется как " " 2(tr t (2) R) Δt (1) R RS = =, (4) (W1 + W2) (W0,5(1) + W0,5(2)) где W 0,5 ширина пика на половине высоты; R S безразмерная величина; Δt R и W должны быть выражены в одних и тех же единицах. Разрешение равно единице, если расстояние между двумя пиками равно средней ширине пика. При R S >1 пики должны быть разрешены. Однако полное разрешение может и не достигаться, если велика ширина пика у основания, т. е. велики размывающие эффекты. Степень размывания пика определяет эффективность колонки. Эффективность в хроматографии это способность системы «предотвращать» (ограничивать) размывание зон разделяемых веществ. Эффективность выражается числом теоретических тарелок N или высотой, эквивалентной теоретической тарелке (ВЭТТ). Теоретическая тарелка (Т.Т.) это участок слоя сорбента, на котором распределение вещества между двумя фазами завершается установлением равновесия. Число теоретических тарелок можно рассчитать по формуле: 2 2 t N 5,54 R = W или 16 tr N, (5) 0,5 W где t R полное время удерживания или эквивалентное этой величине полное расстояние удерживания вещества отрезок временной оси хроматограммы, соответствующий времени удерживания. W и W 0,5 ширина пика у основания и на половине его высоты соответственно (рис. 1.2б). ВЭТТ это высота слоя сорбента (колонки), необходимая для установления равновесия: H= L/ N, (6) где L длина слоя сорбента. Чем больше N и меньше Н, тем выше эффективность колонки. ВЭТТ зависит от скорости потока подвижной фазы (U). Эту зависимость можно представить в виде кривой в координатах H U, что позволяет определить минимальную ВЭТТ для данной хроматографической системы при некотором оптимальном значении скорости потока. 11

12 1.3. Плоскостная хроматография Стадии хроматографического процесса, материалы и реагенты, применяемые в плоскостной хроматографии (ПХ) К плоскостным относятся бумажная (БХ), в которой в качестве сорбента используется специальная бумага, и тонкослойная хроматография (ТСХ), в которой процессы разделения смеси веществ осуществляются в тонких слоях сорбента, нанесенного на инертную твердую подложку или в пленках пористого полимерного материала, а также электрохроматография. Метод ТСХ составляет основу скрининговых тестов в химических, промышленных, клинических, фармацевтических, биохимических и биологических лабораториях. Метод предложен в 1938 г. отечественными учеными Н.А. Измайловым и М.С. Шрайбером. Однако широкие возможности метода открыты позднее благодаря работам Ю. Кирхнера и Э. Шталя. Анализ методом ТСХ включает следующие стадии: отбор и подготовка к анализу пробы; предварительная обработка пластины; подготовку хроматографической камеры; нанесение образца; хроматографическое разделение веществ; удаление элюента с пластины; детектирование компонентов, идентификация веществ и полуколичественный анализ. Неподвижными фазами, применяемыми в ТСХ, служат те же материалы, что и в ВЭЖХ для разделений, основанных на адсорбции, распределении (нормально- или обращенно-фазовом), ионном обмене или эксклюзии. Сорбент (силикагель, оксид алюминия, целлюлоза, полиамиды, кизельгур) в виде мелко размолотых частиц размером 20 мкм наносится тонким слоем (мкм) на стеклянную, металлическую или полимерную пластину. В этом случае при развитии хроматограммы и ее длине 12 см достигается около 200 разделений. Одной из важных задач, которые стоят перед исследователем, является правильный выбор подвижной фазы (ПФ). В нормально-фазовой хроматографии (см. также раздел 1.2.2), как и в колоночном исполнении, с увеличением полярности растворителя элюирующая способность растет. Растворители при этом в меньшей степени сорбируются неподвижной фазой, поэтому коэффициенты распределения сорбируемых веществ между ПФ и НФ высокие. В обращенно-фазовом варианте с увеличением полярности растворителя элюирующая сила снижается. Подвижная фаза, поднимающаяся по слою сорбента за счет действия капиллярных сил, взаимодействует с газовой фазой. Поэтому предвари- 12

13 тельно, до начала процесса хроматографирования, проводят насыщение камеры и слоя сорбента растворителем, находящимся в паровой фазе, т. е. достигается состояние равновесия подвижной фазы с газовой фазой. В обычной камере состояние насыщения достигается примерно через 5 10 мин для растворителя с температурой кипения ниже С. Для насыщения камеры высококипящим растворителем требуется несколько часов. Предварительное насыщение слоя сорбента любым чистым растворителем увеличивает скорость перемещения фронта растворителя по слою и уменьшает значения хроматографической подвижности R f анализируемых веществ. Предварительному насыщению подвергаются как нормальные, так и обращенные фазы. При разделении веществ на нормальных (полярных) фазах для насыщения слоя сорбента предпочтительно использовать полярные составляющие многокомпонентных элюентов, а на ОФ неполярные. По способам хроматографирования различают линейную, круговую и антикруговую ТСХ. Наиболее широко используется линейный вариант хроматографирования. В этом случае пробы наносят на стартовую линию параллельно одной из сторон бумаги или пластины (см. работы 8 10). Последние помещают вертикально в хроматографическую камеру, на дно которой налит элюент, и проводят восходящую планарную хроматографию (рис. 1.3а). Линейное развитие хроматограмм можно осуществлять и горизонтально с подачей элюента с одной или с двух сторон (рис. 1.3б). Можно также использовать нисходящую вертикальную ТСХ и БХ. В круговой ПХ пробы наносят на некотором расстоянии от центра пластины по окружности, а элюент подают в центр (рис. 1.3в). В антикруговой ПХ пробы наносят по окружности по периферии пластины и элюент подают в направлении к центру пластины (рис. 1.3г). Рис Варианты хроматографирования в ПХ: а линейное вертикальное; б линейное горизонтальное; в круговое; г антикруговое При нанесении проб на пластину для получения воспроизводимых результатов необходимо соблюдать ряд требований. Первоначально проводят разметку пластины, отмечая линию старта. Существенным является постоянство расстояния линии нанесения проб от края или центра пластины (обычно 1 2 см) и линии погружения пластины в элюент (около 0,5 см) в случае линейного варианта хроматографирования. Ширина 13

14 стартовой зоны на пластине должна быть по возможности минимальной, для ТСХ 2 3 мм, для ВЭТСХ 1 мм. Для нанесения проб используют стеклянные или платиновоиридиевые капилляры, микропипетки, шприцы, а также специальные дозирующие устройства. В ТСХ объемы проб составляют 0,5 3,0 мкл, для ВЭТСХ ~ 200 нл. Для сохранения активности слоя адсорбента рекомендуется во время нанесения проб покрывать адсорбент выше линии нанесения стеклянной пластиной и наносить пробу по возможности быстро. При проведении идентификации наиболее просто эта процедура выполняется при наличии собственной окраски у разделяемых веществ. Идентификация неокрашенных соединений может проводиться с применением специфических химических реагентов или инструментальных методов. Идентификация по регистрации поглощения веществ в УФ-области или их собственной флуоресценции основана на введении в слой сорбента флуоресцирующих индикаторов (люминофоров), которые при облучении УФ-светом возбуждаются при такой длине волны, при которой детектируемые вещества поглощают. Они становятся хорошо видны в виде темных зон на зеленоватом светящемся фоне сорбента. При детектировании с помощью химических реагентов используют универсальные реагенты (серная кислота, KMnO 4, K 2 Cr 2 O 7, фосфорномолибденовая кислота (ФМК)) и специфические на индивидуальные соединения отдельных классов. Так, нингидрин используется для визуализации аминогрупп, хлорид железа (III) для фенолов, комплексообразующие реагенты для визуализации ионов металлов. Для опрыскивания пластин применяют пульверизаторы. При этом точность количественных определений зависит от качества детектирования. После визуализации разделенных веществ проводят обработку хроматограмм Основные характеристики разделения веществ в плоскостной хроматографии Сорбционные свойства системы в ТСХ характеризуются относительной скоростью перемещения (хроматографическая подвижностью) R f, которая рассчитывается из экспериментальных данных по уравнению: l Rf =, (7) L где l расстояние от стартовой линии до центра зоны: L расстояние, пройденное за это же время растворителем. Наиболее общий подход к качественному анализу основан на значениях R f. Хроматографическая подвижность является чувствительной характеристикой вещества, однако она существенно зависит от условий определения. Эта трудность преодолевается путем проведения опыта в строго фиксированных стандартных условиях, которые регламентируют размер пластин, толщину слоя сорбента, объем пробы, длину пути фронта раство- 14

15 рителя и другие факторы. При соблюдении стандартных условий получаются воспроизводимые значения R f, которые можно использовать в аналитических целях при сравнении с табличными, если они получены в тех же условиях опыта. Самым надежным является метод свидетелей, когда на стартовую линию рядом с пробой наносятся индивидуальные вещества, соответствующие предполагаемым компонентам смеси. Влияние различных факторов на все вещества будет одинаковым, поэтому совпадение R f компонента пробы и одного из свидетелей дает основания для отождествления веществ с учетом возможных наложений. Несовпадение R f интерпретируется более однозначно: оно указывает на отсутствие в пробе соответствующего компонента. По смыслу определения R f как свойство, характерное для данной системы, не должно зависеть от концентрации и других факторов. Опыт показывает, однако, что воспроизводимость и постоянство значений R f не всегда достаточны, особенно при анализе неорганических ионов. На R f влияет качество и активность сорбента, его влажность, толщина слоя, качество растворителя и другие факторы, не всегда поддающиеся достаточному контролю. На практике часто пользуются относительной величиной относительной подвижностью R f, отн: R f, отн R f, x =, (8) R где R f, х и R f, ст подвижность определяемого и стандартного веществ соответственно. Стандартное вещество (свидетель) в том же растворителе наносится на стартовую линию рядом с анализируемой пробой и, таким образом, хроматографируется в тех же условиях. Как и в других вариантах хроматографии эффективность разделения в ТСХ определяется числом теоретических тарелок (N) и высотой, эквивалентной теоретической тарелке ВЭТТ (H), которые могут быть рассчитаны по уравнениям: 2 l I N = 16 w H f, ст LR = 16 w f 2, (9) 2 L w = =, (10) N 16 R L где w ширина зоны в направлении движения элюента. Величина H характеризует размытие хроматографической зоны, N эффективность хроматографической пластины. f 15

16 сорбенте бывает минимальным, следовательно, концентрация вещества будет максимальна и чувствительность анализа увеличится. Уменьшение диаметра зерна в тонком слое приводит к увеличению продолжительности анализа и усиливает диффузное размывание. Количественные определения в ТСХ могут быть сделаны или непосредственно на пластинке, или после удаления вещества с пластинки. При непосредственном определении на пластинке измеряют тем или иным методом площадь пятна (например, с помощью миллиметровой кальки) и по заранее построенному градуировочному графику находят количество вещества. Применяют также прямое спектрофотометрирование пластинки с помощью фотоденситометров. Для количественных расчетов также предвалиния финиша элюента w 2 Δ X L w 1 линия старта l Разрешение R S (разрешающая способность) двух хроматографических зон определяется расстоянием между их центрами (ΔХ), отнесённым к среднеарифметическому их ширины (w 1) и (w 2) (рис. 1.4): R S 2ΔX = w + w 1 2. (11) Коэффициент разделения в тонком слое К f связан с числом теоретических тарелок и подвижностями R f уравнением K f R f, x1 R f, x2 = n, (12) R R f, x1 где R f, x1, R подвижности соседних компонентов смеси. f,x2 Теоретический анализ показывает, что при небольших значениях R и уменьшении длительности анализа размывание зоны вещества на f,x1 Рис Параметры удерживания веществ в ТСХ f, x2 16

17 рительно строят градуировочный график, используя оптическую плотность в центре пятна. Наиболее точным считается метод, в котором вещество после разделения удаляется с пластинки и анализируется спектрофотометрическим или иным методом. Удаление вещества с пластинки обычно производят механическим путем, хотя иногда применяют вымывание подходящим растворителем. 17

18 2. СПЕКТРАЛЬНЫЕ МЕТОДЫ АНАЛИЗА Среди физических методов при исследовании органических соединений, наряду с хроматографическими, наибольшее распространение получили спектральные методы. Наибольшую информацию можно получить при изучении взаимодействий вещества с электромагнитным излучением в широком интервале частот, начиная с радиоволн и заканчивая γ-лучами. При этом происходит изменение энергии молекул, которое определяется соотношением Δ E = E1 E2 = hν, (13) где Δ E изменение энергии системы; 1 2 энергии системы в различных состояниях; h постоянная Планка; ν частота излучения. При помещении молекулы в электромагнитное поле поглощение происходит только в случае выполнения условия Бора (13). При переходе из состояния Е 1 в Е 2 молекула поглощает энергию, при возвращении из состояния Е 2 в Е 1 излучает ее с той же частотой. Электромагнитный спектр охватывает огромную область длин волн или энергий. Основные области спектра, используемые в спектральном анализе: Интервал длин волн Участок спектра,1 нм, или м γ-излучение нм, или м Рентгеновское излучение нм, или м Ультрафиолетовое излучение нм, или, м Видимый свет нм, или 7, м Инфракрасное излучение м Микроволны, или СВЧ λ > 1 м Радиоволны 1 нм = 10 9 м. Молекулярный спектральный анализ предполагает качественное и количественное определение состава пробы по спектрам поглощения и испускания. Энергию молекулы в первом приближении можно разделить на три составляющие, связанные с вращением молекул как целого, колебаниями образующих молекулу атомов и движением электронов в молекуле. Молекулярные спектры очень сложны, находятся в различных областях длин волн (частот) и подразделяются на электронноколебательные, колебательно-вращательные и вращательные. Расположены они обычно в области см 1 (0,10 1,25 мкм); , см 1 (1,25 40 мкм); 2, см 1 (мкм) соответственно и характери- 18

19 зуют электронные переходы в молекулах, а также колебательные переходы с изменением колебательных в вращательных состояниях молекулы. Методы молекулярной абсорбционной спектроскопии основаны на измерении уменьшения интенсивности электромагнитного излучения, прошедшего через анализирумый образец. В зависимости от длины волны падающего света различают спектрофотометрию в ультрафиолетовой (УФ), видимой (вид) и инфракрасной (ИК) области электромагнитного излучения Спектральные параметры полосы поглощения Полоса поглощения (рис. 2.1) характеризуется следующими величинами: ν max значение частоты в максимуме полосы (характеризует положение полосы в ИК спектре); I λ пиковая интенсивность (в максимуме), т. е. значение, соответствующее максимальному поглощению энергии, отн. ед.: ν 2 ν 1 Q = I(ν) Δν интегральная интенсивность, соответствующая площади фигуры, ограниченной полосой поглощения в пределах ν 1 ν 2, см 1 ; Δν 1/2 полуширина полосы (ширина максимума поглощения на половине максимальной высоты). I λ I 1/2 Δν1/2 ν1 νmax ν2 ν,cm -1 Рис Контур полосы поглощения При изменении структуры молекулы в спектре наблюдается не только смещение v max, но и изменение величины Δν 1/2. Физический смысл спектральных величин: ν тах частота света при переходе с одного уровня на другой, см 1 ; Q интегральная интенсивность, 19

20 пропорциональная вероятности данного перехода. Чем больше Q, тем более вероятен переход электронов с одного уровня на другой. Зависимость интенсивности прошедшего через вещество света (с определенным значением длины волны) от концентрации вещества в пробе (если концентрация вещества выражается числом молей в дм 3 (моль/л)) и толщины слоя описывается математическим выражением, установленным опытным путем: di=-εcidl (14) или после интегрирования от нуля до l как I k λ lc λ = I 0 e λ, (15 а) формулируемым как закон Бугера Ламберта Бера, где I λ и I 0λ интенсивность прошедшего и падающего излучений, отн. ед.; k λ показатель поглощения при данной длине волны (поглощающая способность вещества); с молярная концентрация вещества, моль/л; l толщина слоя образца, см. Подстрочный индекс λ обычно опускают, предполагая проведение определений при данной длине волны. Записав выражение (15) в логарифмической форме, получим: ln(i o /I) = kcl. (15б) При переходе к десятичным логарифмам уравнение (15а) примет вид I = I εlc, (16) где ε показатель поглощения света (молярный коэффициент экстинкции), рассчитанный на единицу концентрации вещества и на единицу толщины слоя (константа, не зависящая от интенсивности падающего света и концентрации вещества, но зависящая от длины волны падающего света). Соотношение между константами k и ε составляет ε = 0,4343 k. Закон Бугера Ламберта Бера, записанный в форме уравнения (16), в аналитической химии применять неудобно, так как нет удобного способа измерения I и I 0 с одной стороны, и выражение имеет степенную зависимость от концентрации вещества. Чтобы учесть потери света на отражение и рассеивание, сравнивают интенсивность света, прошедшего через исследуемый раствор (I), с интенсивностью света, прошедшего через кювету с растворителем (I 0). Отношение светового потока, прошедшего через вещество, к потоку, упавшему на вещество I/I 0, называют коэффициентом пропускания (или просто пропусканием): 20

21 T I = 100 % (17) I 0 Величину отношения потока излучения, поглощенного данным веществом, к потоку излучения, упавшего на него (I 0 I)/I 0 = 1 Т, называют коэффициентом поглощения (или поглощением), а величину, обратную логарифму пропускания, оптической плотностью вещества. Таким образом, А = lg T /100 = lg I / I0 = lg I0/ I, (18а) А = εlc. (18б) При подчинении растворов закону поглощения наблюдается прямолинейная зависимость оптической плотности от концентрации вещества в растворе при постоянном значении l. Эта пропорциональность строго соблюдается только для монохроматических излучений (при определенной длине волны). Если концентрацию с выражают числом молекул n в 1 дм 3, то показатель поглощения k называют молекулярным показателем, относят к одной молекуле и обозначают через γ-. Если концентрацию с выражают числом грамм-молей в 1 л раствора, то показатель поглощения к называют молярным коэффициентом поглощения и обозначают через ε; его размерность л см 1 -моль 1. Соотношение между коэффициентами γ и ε записывают следующим образом: γn = cε, ε/γ = n/c = 6, / или ε = γ, γ = l, ε. Если вещество не имеет постоянного, точно известного состава и для него нельзя точно указать молярную массу, то в таких случаях принято использовать концентрацию С, которую выражают в мг/мл или в % (1мг/мл 0,1%), то показатель поглощения k называют удельным коэффициентом поглощения и обозначают Е. Его размерность % 1 см 1. Основной закон светопоглощения в этом случае следует записать как А = ElC. (18в) Закон аддитивности важное дополнение к закону Бугера Ламберта Бера. Сущность закона заключается в независимости поглощения индивидуального вещества от наличия других веществ, обладающих собственным поглощением, или безразличных к электромагнитному излучению. Математическая запись может быть представлена в следующем виде: 21

22 А = ε (19) ilc. i Для оценки степени поглощения анализируемого вещества проводят сравнение интенсивности излучения, прошедшего через испытуемый раствор с интенсивностью излучения, прошедшего через раствор, поглощение которого принимают равным нулю раствор сравнения. В качестве растворов сравнения обычно используют растворитель, на основе которого приготовлен раствор с содержанием всех компонентов, за исключением определяемого вещества. Очень важно в этом случае поддерживать постоянство состава растворителя и избегать изменения положения максимума поглощения, а также молярного коэффициента поглощения вещества в зависимости от состава раствора Молекулярная абсорбционная спектроскопия в видимой и УФ-области электромагнитных излучений Характеристика спектрофотометрического определения Абсорбционная спектроскопия в видимой и УФ-областях один из наиболее полезных для химиков методов количественного анализа. Важнейшими достоинствами спектрофотометрического и фотометрического методов являются следующие. 1. Широта применения. Многочисленные неорганические и органические вещества поглощают в видимой и УФ-областях, что делает возможным их количественное определение. Кроме того, многие непоглощающие соединения можно определять после превращения их в поглощающие путем соответствующей химической реакции. 2. Высокая чувствительность. Молярные коэффициенты поглощения обычно лежат в интервале; поэтому, как правило, можно определять концентрации в интервале М; нижний предел иногда можно довести до 10 6 или даже 10 7 М путем соответствующих изменений в методике. 3. Достаточно высокая избирательность. При правильно выбранных условиях можно найти интервал длин волн, в которых определяемое вещество является единственным поглощающим компонентом в пробе. Более того, перекрывание полос поглощения можно иногда исключить, сделав дополнительные измерения при других длинах волн. 4. Высокая точность. Относительная ошибка при определении концентрации спектрофотометрическими и фотометрическими методами обычно лежит в интервале 1 3 %. Используя специальную технику, можно часто снизить ошибки до нескольких десятых процента. 22

23 5. Простота и удобство. Спектрофотометрические и фотометрические измерения на современных приборах выполняются легко и быстро. Более того, метод часто можно автоматизировать для выполнения серийных анализов. Поэтому абсорбционный анализ широко применяют для химических определений при непрерывном контроле загрязнения атмосферы и воды, а также промышленных процессов Оптимальные условия фотометрического определения Выбор длины волны. Оптическую плотность рекомендуется измерять при длине волны, соответствующей максимуму поглощения, так как здесь наблюдается максимальное изменение оптической плотности на единицу концентрации, следовательно, можно ожидать строгого подчинения закону Бугера Ламберта Бера и меньшей погрешности из-за неточности при воспроизведении длины волны, установленной на приборе. Если в спектре имеется несколько полос, выбор останавливают на наиболее интенсивной, так как работа в области максимума позволяет обеспечить большую чувствительность определения. Плоские максимумы предпочтительнее, так как при этом меньше сказывается погрешность в установлении длины волны, чем в случае острых или круто спадающих участков кривой. При выборе оптимальной длины волны в фотометрическом анализе ориентируются также на наибольшее различие поглощения аналитической формы и исходных реагентов (для окрашенных соединений) (рис. 2.2). Толщина светопоглощающего слоя. Уравнение закона Бугера Ламберта Бера показывает, что чем больше толщина слоя (l), тем больше оптическая плотность, и, следовательно, тем больше при прочих равных условиях чувствительность определения. Однако бесконечно увеличивать толщину слоя (l) на практике невозможно: возрастают потери на рассеяние света, особенно при работе с растворами. Кюветы с толщиной слоя больше, чем пять сантиметров, для фотометрирования не применяются. оп оп оп Рис Принцип выбора оптимальной длины волны при фотометрическом определении: 1 поглощение исходного реагента; 2 поглощение аналитической формы 23

24 Оптическая плотность (или пропускание). Измерительные устройства фотометрических приборов устроены таким образом, что абсолютная ошибка Т обычно имеет постоянную величину во всем интервале значений Т. На рис. 2.3 показано, что при одной и той же погрешности Т абсолютная погрешность с существенно возрастает с увеличением концентрации раствора (с 2 > c 1, хотя Т 2 = Т 1). Относительная ошибка с/с будет уменьшаться с ростом концентрации и возрастать с увеличением абсолютной ошибки с. При каких значениях Т относительная ошибка с/с будет минимальна? Математически показано, что с/с является функцией величины Т (рис. 2.4). Относительная ошибка определения концентрации проходит через минимум при Т = 0,398 (А = 0,435). Расчеты и опыты показали, что измерения растворов, имеющих А > 2,0 и А < 0,03, характеризуются большими погрешностями. Отсюда концентрация определяемого вещества должна быть такова, чтобы оптическая плотность раствора находилась в пределах 0,03 < А < 2,00. Например, концентрация определяется: c =. Если молярный коэффици- 0, 435 ε λ l ент поглощения равен 10 3, то при толщине светопоглощающего слоя l = 1 см 0435, 4 c = = 435, 10 М l ΔT 1 ΔT 2 Δc 1 Δc 2 Рис Зависимость Т от с 24

25 Δc/c Рис Зависимость относительной погрешности от пропускания раствора Фотометрическая реакция. Многие органические и неорганические вещества поглощают в видимой и УФ-областях, что делает возможным их определение. Кроме того, многие непоглощающие соединения можно определять после превращения их в поглощающие путем соответствующей (фотометрической) химической реакции. Окрашенные соединения в растворе получают главным образом в результате реакций окислениявосстановления и комплексообразования, к которым предъявляют следующие требования. 1. Аналитический реагент должен быть введен в достаточном количестве для превращения всего определяемого вещества в аналитическую форму. 2. Следует выбирать только те реакции, которые протекают с большой скоростью, следовательно, состояние равновесия достигается в короткое время. 3. Исследуемые соединения должны быть устойчивыми во времени, нечувствительными к свету и достаточно интенсивно окрашены. 4. Если окрашенное соединение является комплексным, то оно должно иметь постоянный состав, малую константу диссоциации (т. е. быть достаточно устойчивым). Для выяснения оптимальных условий фотометрирования каждая система требует специального физико-химического исследования для установления необходимого ph раствора, концентрации реагента, устойчивости образующегося комплекса, влияния конкурирующих реакций и присутствия посторонних ионов на устойчивость комплексных ионов и т. д. Чувствительность метода. В общем случае чувствительность фотометрического анализа определяют по формуле: с min = А min /ε l. Задав А min = 0,01, при котором еще можно вести анализ, и при l = 1 см, ε = ,398

26 (свойственно многим окрашенным соединениям) получаем с min = 001, = М. l Количественный анализ абсорбционными методами Метод градуировочного графика. Основан на построении градуировочного графика в координатах А с. Для этого при определенной длине волны измеряют оптические плотности серии эталонных растворов, а также анализируемого раствора, затем по градуировочному графику определяют концентрацию вещества с x. Обычно градуировочные графики представляют собой прямую линию, идущую из начала координат. При отклонениях от закона Бугера Ламберта Бера, то есть при нарушении линейной зависимости А(с), число точек на графике должно быть увеличено. Однако линейная зависимость повышает точность определения. Основные ограничения метода связаны с трудностями приготовления эталонных растворов и учетом влияния так называемых третьих компонентов, то есть компонентов, которые находятся в пробе, сами не определяются, но на результат влияют. Метод молярного коэффициента поглощения. Если заранее известна средняя величина ε λ, определенная для нескольких стандартных растворов в совершенно идентичных условиях, то, зная толщину слоя кюветы, можно Aλ рассчитать концентрацию по формуле: c= x. ε λ l Ограничением метода является обязательное подчинение системы в исследуемом интервале концентраций закону Бера. Метод добавок. Этот метод применяют при анализе растворов сложного состава, так как он автоматически позволяет учесть влияние третьих компонентов. Сначала определяют оптическую плотность А x анализируемого раствора с концентрацией с x. Затем в анализируемый раствор добавляют известное количество определяемого компонента (с ст) и вновь измеряют оптическую плотность А x+ст. Так как А x = εl с x и А x+ст = εl (с x + с ст), то A x c x =, A x+ ст cx + cст A x cx = cст. (20) Ax+ ст Ax Концентрацию анализируемого вещества в методе добавок можно найти также по графику в координатах А x+ст = f(с ст) (рис. 2.5). 26

27 Рис Определение концентрации методом добавок График представляет прямую, экстраполяция которой до пересечения с осью абсцисс дает отрезок, равный -с x. Действительно, при А x+ст = 0 из уравнения (20) с x = - с ст. Определение смеси светопоглощающих веществ. Спектрофотометрический метод позволяет определить несколько светопоглощающих веществ в одном растворе без предварительного разделения. Большое практическое значение имеет частный случай такой системы анализ смеси двух окрашенных веществ. В соответствии с законом аддитивности светопоглощения для такой смеси веществ, например А и В, можно записать: A λ = l(ε 1 A,λ c 1 A + εb,λ c 1 B), A λ = l(ε 2 A,λ c 2 A + εb,λ c 2 B). Решение этой системы уравнений при l = 1 дает: Aλ ε 1 B,λ -A 2 λ ε 2 B,λ1 c A =, εa,λ ε 1 B,λ -ε 2 A,λ ε 2 B,λ1 Aλ ε 2 B,λ -A 1 λε 1 B,λ2 c A =. (21) ε ε -ε ε A,λ B,λ A,λ B,λ Длины волн λ 1 и λ 2, при которых следует проводить измерения оптической плотности, выбирают по спектрам поглощения веществ А и В. Особый интерес представляют спектральные участки, в которых одно из веществ свет не поглощает, а другое обладает интенсивным светопоглощением. Если, например, ε В,λ = 0, то вместо (21) будем иметь: A A ε A ε c = λ1 λ 2 Α, λ1 λ1 Α, λ 2 ; c =, A ε B ε ε Α, λ 1 Α, λ B, λ 1 2 Этот случай реализуется, например, при определении фенилаланина и триптофана. В области длин волн 279 нм поглощает только триптофан,

28 и он может быть определен по оптической плотности раствора при этой длине волны. При 257 нм свет поглощают оба компонента. Метод дифференциальной фотометрии. Абсорбционная спектроскопия является разностной, так как из поглощения раствора всегда вычитают поглощение растворителя, реагентов, примесей, кюветы и т. д. Дифференциальной спектроскопией называют такой метод определения, когда в качестве раствора сравнения используют раствор определяемого вещества с известной концентрацией. При дифференциальном способе измерения настройку на нуль прибора проводят с помощью поглощающих растворов с постоянной оптической плотностью. В зависимости от способа настройки различают метод высокого поглощения, метод низкого поглощения и метод предельной точности. По сути, дифференциальный способ измерения сводится к растяжению измерительной шкалы прибора. В методе высокого поглощения настройку на 100 % пропускания проводят по эталонному раствору с меньшей концентрацией, чем в исследуемом. Данный метод позволяет измерять пропускание сильно поглощающих растворов и таким образом определять сравнительно большие концентрации веществ. Но в подобных случаях высококонцентрированные растворы часто не подчиняются закону Бугера Ламберта Бера. Поэтому рекомендуется применять двусторонний дифференциальный способ измерения оптической плотности при построении градуировочного графика в качестве раствора сравнения выбирают не первый раствор серии эталонов, а тот, для которого произведение εc максимально. В методе низкого поглощения сначала устанавливают прибор на нуль, но вместо шторки используют раствор с большей концентрацией, чем в исследуемом растворе. Метод применим для растворов с оптической плотностью меньше 0,1. В методе предельной точности настройку на Т = 0 и Т = 100 % проводят по двум растворам. Концентрация в одном из них больше, а в другом меньше, чем в исследуемом растворе. При дифференциальном способе измерения повышается воспроизводимость измерений Инфракрасная спектроскопия Некоторые характеристики молекулярных спектров Если молекула поглощает или излучает относительно малые кванты энергии (на один-два порядка меньше, чем для возбуждения электронного спектра), наблюдается колебательный спектр молекулы. Изменение дипольного момента молекулы в момент возбуждения колеба- 28

29 тельного состояния является необходимым условием поглощения или испускания энергии. Наличие изменений дипольного момента при колебании зависит от симметрии системы. В двухатомной молекуле единственно возможным колебанием является движение атомов вдоль оси связи. В таких молекулах, как О 2, С1 2 и др., дипольный момент равен нулю, колебания этих молекул не сопровождаются поглощением ИК-излучения. Такие колебания называются неактивными в ИК-спектре. В молекулах типа СО, НС1 и др. центры положительных и отрицательных атомов не всегда совпадают, поэтому электронное распределение при поглощении инфракрасного излучения меняется, что приводит к изменению дипольного момента молекулы. Подобные колебания называются активными в ИК-области. Они могут взаимодействовать с электромагнитным излучением, поглощая энергию и приводя к появлению полосы поглощения в спектре. 1 2 Рис Колебания трехатомных молекул: а симметричные валентные колебания в нелинейной (1) и линейной (2) молекулах (ν s); b асимметричные колебания в нелинейной (1) и линейной (2) молекулах (ν as); c деформационные колебания в нелинейной молекуле (δ); d вырожденное колебание в линейной молекуле Инфракрасное излучение сообщает молекуле, находящейся в основном (самом низком) электронном состоянии, энергию, необходимую для переходов между вращательными и колебательными уровнями энергии. При поглощении молекулой того или иного кванта энергии происходит поглощение света определенной (характеристической) частоты, связанной, как правило, с функциональными группами и атомами в молекуле. Луч, проходящий через образец, ослабляется в области поглощения. Регистрируя интенсивность прошедшего излучения, получают кривую, на которой видны максимумы поглощения. Колебательные спектры молекул богаты полосами, каждая из которых соответствует возбуждению колебательного состояния определенной 29


Лекция 6 Хроматографические методы анализа План лекции 1. Понятия и термины хроматографии. 2. Классификация хроматографических методов анализа. Хроматографическое оборудование. 3. Виды хроматографии: газовая,

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ Спектрофотометрия в ОФС.1.2.1.1.0003.15 ультрафиолетовой и Взамен ОФС ГФ X, ОФС ГФ XI, видимой областях ОФС 42-0042-07 ГФ XII,

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ Тонкослойная хроматография ОФС.1.2.1.2.0003.15 Взамен ст. ГФ XI, вып.1 Хроматографический процесс, протекающий при движении

Открытие хроматографии(1903 г.) МИХАИЛ СЕМЕНОВИЧ ЦВЕТ (1872-1919) Основные этапы развития хроматографии 1903 г. Открытие хроматографии (Цвет М.С.) 1938 г. Тонкослойная или планарная хроматография (Измайлов

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 6 по дисциплине ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА ЯДЕРНЫХ МАТЕРИАЛОВ СПЕКТРОФОТОМЕТРИЯ Фотоколориметрический анализ (молекулярная абсорбционная спектроскопия) относится к оптическим

Физико-химический анализ Фотометрический анализ Оптические методы анализа Атомно-адсорбционный анализ основанный на поглощении световой энергии атомами анализируемых веществ. Молекулярно-адсорбционный

8. Вопросы 1. Дайте определение хроматографии. 2. Какие особенности хроматографии позволяют достичь лучшего разделения веществ с близкими свойствами по сравнению с другими методами разделения. 3. Перечислите

ЛЕКЦИЯ 7 ХРОМАТОГРАФИЯ КАК МЕТОД РАЗДЕЛЕНИЯ, ИДЕНТИФИКАЦИИ И КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ Основные понятия и определения Различные классификации хроматографических методов Хемосорбционная хроматография

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ Хроматография на бумаге ОФС.1.2.1.2.0002.15 Взамен ст. ГФ XI, вып.1 Хроматографический процесс, протекающий на листе фильтровальной

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ Газовая хроматография ОФС.1.2.1.2.0004.15 Взамен ст. ГФ XI Газовая хроматография это метод разделения летучих соединений, основанный

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «Уральский государственный университет им. А.М. Горького» ИОНЦ «Экология и природопользование»

Общая характеристика и классификация методов инструментального анализа Инструментальные методы анализа основаны на зависимости физических свойств вещества от его природы, причем аналитический сигнал представляет

Лекция 3. Абсорбционная спектроскопия. Фотоколориметрия и спектрофотометрия. Спектральные методы анализа и исследования основаны на взаимодействии электромагнитных волн с веществом. Излучение направляется

АНАЛИЗ СПЕКТРА ПОГЛОЩЕНИЯ ОКРАШЕННОГО ВЕЩЕСТВА Левин С.С. Кубанский Государственный Технологический Университет Краснодар, Россия Свойство молекул и атомов поглощать свет определенной длины волны, характерных

Лабораторная работа 7б Хроматографическое определение состава газовой фазы почв. Хроматография (от греч. chroma, родительный падеж chromatos цвет, краска) - физико-химический метод разделения и анализа

1. Пояснительная записка 1.1. Требования к студентам Студент должен обладать следующими исходными компетенциями: базовыми положениями математических и естественных наук; владеть навыками самостоятельной

Газовая хроматография 1 Требования к веществам 1. Летучесть 2. Термостабильность (вещество должно испарятся без разложения) 3. Инертность Схема газового хроматографа 1 2 3 4 5 1. Баллон с газом-носителем

ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ АММОНИЯ В ВОДЕ. Зачем нужно знать содержание аммония в питьевой воде, воде бассейна. Присутствие иона аммония свидетельствует о наличии в воде органического вещества животного происхождения.

Спектрометрия в инфракрасной области ОФС.1.2.1.1.0002.15 ВзаменГФХ Взамен ст. ГФ XI, вып.1 Взамен ГФ XII, ч.1, ОФС 42-0043-07 Инфракрасные спектры (колебательные спектры) (ИК-спектры) возникают вследствие

Московский физико-технический институт (Государственный университет) Департамент молекулярной и биологической физики Физические методы исследования Лекция 9 Жидкостная хроматография Методы и техника г.

Физикохимические методы анализа Хроматография В основе метода хроматографии лежит явление сорбции Сорбция процесс поглощения газов, паров и растворенного вещества твердыми или жидкими сорбентами Виды

2 Методы анализа: 1. Химические методы. Химическое равновесие и его использование в анализе. Кислотно-основное равновесие. Сила кислот и оснований, закономерности их изменения. Функция Гаммета. Вычисление

МИНОБРНАУКИ РОССИИ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ХИМИЧЕСКИЙ ФАКУЛЬТЕТ Аннотированная рабочая программа дисциплины Хроматографические методы анализа Направление подготовки

46. ХРОМАТОГРАФИЧЕСКИЕ МЕТОДЫ РАЗДЕЛЕНИЯ Хроматографическими называют многостадийные методы разделения, в которых компоненты образца распределяются между двумя фазами неподвижной и подвижной. Неподвижная

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ХИМИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА АНАЛИТИЧЕСКОЙ ХИМИИ П Р О Г Р А М М А С П Е Ц И А Л Ь Н О Г О К У Р С А «ХРОМАТОГРАФИЧЕСКИЙ АНАЛИЗ» ДЛЯ СТУДЕНТОВ 5 КУРСА СПЕЦИАЛЬНОСТИ

Физико-химический анализ Физико-химические методы анализа Физико-химические методы анализа (ФХМА) основаны на зависимости физических свойств вещества от его природы, причем аналитический сигнал представляет

АННОТАЦИЯ рабочей программы учебной дисциплины «Введение в хроматографические методы анализа» по направлению подготовки 04.03.01 Химия по профилю подготовки «Аналитическая химия» 1. Цели освоения дисциплины

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «АМУРСКАЯ ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ» МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ПОГЛОЩЕНИЕ СВЕТА.

ПОНЯТИЕ ОБ АНАЛИТИЧЕСКОМ СИГНАЛЕ Информацию о качественном и количественном составе анализируемого объекта химик-аналитик получает из аналитического сигнала. Аналитический сигнал среднее значение результатов

01/2016:20224 2.2.24. АБСОРБЦИОННАЯ СПЕКТРОФОТОМЕТРИЯ В ИНФРАКРАСНОЙ ОБЛАСТИ Инфракрасные спектрофотометры применяют для записи спектров в области от 4000 см -1 до 650 см -1 (от 2,5 мкм до 15,4 мкм), а

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФАРМАКОПЕЙНАЯ СТАТЬЯ Кеторолака трометамол ФС.2.1.0022.15 Кеторолака трометамол Ketorolacum trometamolum Взамен ГФ XII, ч.1, ФС 42-0242-07 (1RS)-5-Бензоил-2,3-дигидро-1H-пирролизин-1-карбоксилат

ОГЛАВЛЕНИЕ Предисловие....................................... 6 Список обозначений и сокращений.................... 9 Глава 1 Атомно-эмиссионный анализ......................... 11 Физические основы атомного

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ Электрофорез ОФС.1.2.1.0021.15 Взамен ст. ГФ XI, вып.1 Электрофорез метод анализа, основанный на способности заряженных частиц,

Аналитическая химия 4 семестр, Лекция 17. Модуль 3. Хроматография и другие методы анализа. Хроматография. Принцип и классификация методов. 1. Принцип хроматографического разделения. Стационарная и подвижная

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ Рамановская спектрометрия ОФС.1.2.1.1.0009.15 Вводится впервые Рамановская спектрометрия является экспрессным (1 2 с) и неразрушающим

Физикохимические методы анализа 1 Физико-химические методы анализа 2 Спектральные Вид энергии возмущения Электромагнитное излучение Измеряемое свойство Длина волны и интенсивность спектральной линии в

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. Н.Г. ЧЕРНЫШЕВСКОГО» В.И. Кочубей ОПРЕДЕЛЕНИЕ

Московский физико-технический институт Департамент молекулярной и биологической физики Физические методы исследования Лекция 9 Газовая хроматография Техника и методы эксперимента г. Долгопрудный, 3 апреля

Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

1. Перечень компетенций с указанием этапов (уровней) их формирования. ПК-1: способность использовать знания теоретических, методических, процессуальных и организационных основ судебной экспертизы, криминалистики

04.07 Московский физико-технический институт Департамент молекулярной и биологической физики Физические методы исследования Лекция 8 Хроматография г. Долгопрудный, 6 апреля 07г. План. История возникновения

Аналитические методы исследования состояния окружающей среды 1. Цель и задачи дисциплины Целью освоения дисциплины «Аналитические методы исследования состояния окружающей среды» является овладение основами

Водянкин Алексей Юрьевич кафедра ХТРЭ Физикохимические методы анализа Метод анализа Достаточно универсальный и теоретически обоснованный способ определения состава безотносительно к определяемому компоненту

Учебная программа составлена на основе образовательного стандарта ОСВО 1-31 05 01 2013 и учебного плана УВО G 31 153/уч. 2013 г. СОСТАВИТЕЛЬ: В.А.Винарский, доцент, кандидат химических наук, доцент РЕКОМЕНДОВАНА

Работа 4.20 Изучение поглощения света твердыми и жидкими телами Оборудование: фотоэлектрический колориметр-нефелометр ФЭК-60, набор образцов твердого тела, набор кювет с растворами разной концентрации.

Научно-технологическая компания СИНТЕКО М Е Т О Д И К А КОЛИЧЕСТВЕННОГО ХИМИЧЕСКОГО АНАЛИЗА КОФЕ И ЧАЯ НА СОДЕРЖАНИЕ КОФЕИНА МЕТОДОМ ЖИДКОСТНОЙ ХРОМАТОГРАФИИ. ДЗЕРЖИНСК 1997г. 1 Настоящий документ распространяется

ПРАКТИЧЕСКИЕ ЗАНЯТИЯ 8 по дисциплине ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА ЯДЕРНЫХ МАТЕРИАЛОВ ЛЮМИНЕСЦЕНТНЫЙ АНАЛИЗ 1 Интенсивность люминесценции и концентрация люминофора. Если интенсивность люминесценции

Лекция 5 Электронная спектроскопия. Спектроскопия в видимой и ультрафиолетовой (УФ) областях План лекции 1. Вероятности переходов между электронно-колебательновращательными состояниями. Принцип Франка-Кондона.

Методы исследования состава нефтей, газов и газокондесатов Лекция 7 Существующие методы исследования нефтей и н/продуктов можно разделить на: Общие методы анализа нефтей и нефтепродуктов: А) методы технического

Валидация аналитических методов: практическое применение. Писарев В.В., к.х.н., МВА, заместитель генерального директора ФГУП «Государственный научный центр по антибиотикам», Москва (www.pisarev.ru) Введение

Московский физико-технический институт (Государственный университет) Департамент молекулярной и биологической физики Физические методы исследования Лекция 8 Детекторы в хроматографии Жидкостная хроматография

ГОСТ Р 51435-99 Сок яблочный, сок яблочный концентрированный и напитки, содержащие яблочный сок. Метод определения содержания патулина с помощью высокоэффективной жидкостной хроматографии. ОКС 67.160.20

Лекция 14 Взаимодействие света с веществом Сегодня: вторник, 12 ноября 2013 г. Содержание лекции: Дисперсия света Групповая скорость Элементарная теория дисперсии Поглощение света Рассеяние света 1. Дисперсия

Дисперсия света. Тепловое излучение Лекция 7 Постникова Екатерина Ивановна доцент кафедры экспериментальной физики Дисперсия света Дисперсия света зависимость фазовой скорости света c (показателя преломления

Преимущества колонок Agilent AdvanceBio SEC для эксклюзионной хроматографии при анализе биофармацевтических препаратов Сравнение колонок различных производителей для повышения качества данных Обзор технической

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ Хроматография ОФС.1.2.1.2.0001.15 Взамен ст. ГФ XI, вып.1 Хроматографией называется метод разделения смесей веществ, основанный

АНАЛИТИЧЕСКАЯ ХИМИЯ УДК 543.544 АДСОРБЦИОННАЯ ХРОМАТОГРАФИЯ В АНАЛИЗЕ БИОГАЗА 1999 г. М.В. Николаева НИИ химии ННГУ им. Н.И. Лобачевского Л.П. Прохорова Нижегородская станция аэрации Разработана методика