Презентация по астрономии двойные звезды. Двойные звезды




Мицар и Алькор не только проецируются рядом на небесную сферу, но и движутся вокруг общего центра масс. Период обращения – около 2 млрд.лет. В Галактике много двойных и кратных звезд. Мира – Омикрон Кита – двойная звезда. На фотографии а изображены компоненты двойной звезды, находящиеся на расстоянии 0,6". На фотографиях b и с видно, что их форма не является сферичной, виден хвостик от Миры в сторону меньшей звезды. Это может происходить из-за гравитационного взаимодействия Миры Кита со своим спутником ac b


Кратные системы часто представляются невооруженному глазу как одиночные звезды. В хорошие бинокли и телескопы можно заметить их двойственность или кратность. Звезда ε Лиры является физической системой, состоящей из двух тесных звездных пар ε 1 и ε 2. Кратные звезды


Звезда θ Ориона представляет собой сложную кратную систему. θ 1 и θ 2 при наблюдении в небольшой телескоп предстают как четырехкратная система и трехкратная система. В сильный телескоп можно рассмотреть еще больше звезд. Вся система носит название Трапеция Ориона. Трапеция Ориона (в центре)


Примером кратной системы может служить α Центавра (Ригиль Кентаврус), расположенная в 4,3 световых годах от Солнца. Компонент С имеет координаты α = 14 h 26 m, δ = –62°28" и является ближайшей звездой к Солнцу. Его собственное имя – Проксима Центавра. Ригиль Кентаврус – ближайшая к Солнцу звездная система


К системам двойных звезд применимы закон всемирного Тяготения и обобщенные Ньютоном законы Кеплера. Это позволяет оценить массу звезд в двойных системах. По третьему закону Кеплера можно написать пропорцию где m 1 и m 2 – массы двух звезд, имеющих период обращения Р, А – большая полуось орбиты звезды, обращающейся вокруг другой звезды. Массы М и m – массы Солнца и Земли, Т = 1 год, а – расстояние от Земли до Солнца. Эта формула дает сумму масс компонент двойной звезды, т.е. членов этой системы. α – угловое расстояние между компонентами π – годичный параллакс звезды Если из наблюдений определить расстояния звезд до их общего центра тяжести, то можно определить массу каждой звезды.













«Нейтронная звезда» - 7. 8. Измеренные массы нейтронных звезд. Звезды с большей центральной плотностью и с большей массой оказываются неустойчивыми. Внутреннее строение нейтронных звезд. 2. Прямое введение многочастичных сил в изовекторных каналах: Модель релятивистского среднего поля (RMF). Введение многочастичных сил.

«Двойные звёзды» - Визуально двойными астрометрически двойными затменно-двойные спектрально двойные. Для начала выясним, какие звезды так называют. Чем же интересны двойные звезды. Одиночные звезды такой возможности нам не предоставляют. Последним типом двойных являются спектрально двойные. Спектрально двойные. Затменно-двойные.

«Масса звёзд» - Масса почти равна солнечной, и в размере в 2,5 раза больше, чем Земля. Источник энергии Солнца и звёзд. Главная последовательность. Плотности звёзд главной последовательности сравнимы с солнечной плотностью. Массы звёзд составляют приблизительно от 1/20 до 100 масс Солнца. К сверхгигантам красного цвета относится Бетельгейзе.

«Созвездия» - Есть также звезды седьмой, восьмой и даже восемнадцатой величины. Звезда первой величины ровно в 2,512 раза ярче, чем звезда второй величины. В безоблачную и безлунную ночь вдали от населенных пунктов можно различит около 3000 звезд. Зимний треугольник составляют ярчайшие звезды Ориона, Большого Пса и Малого Пса.

«Астрономия созвездия» - Основывается прежде всего на наблюдениях. Но не только Акид влюбился в Галатею. Спиральная галактика М74. Названия созвездий связывали с мифами, именами богов, названиями приборов и механизмов. Знакомство с созвездиями начнем с летнего неба. Малая медведица. Зодиаки. На севере висит перевернутый ковш Большой Медведицы.

Cлайд 1

Cлайд 2

Для начала выясним, какие звезды так называют. Физически двойные звезды по эллипсам вращаются вокруг общего центра масс. Однако, если отсчитывать координаты одной звезды относительно другой, то получится, что звезды движутся друг относительно друга тоже по эллипсам. На этом рисунке за начало отсчета мы взяли более массивную голубую звезду. В такой системе центр масс (зеленая точка) описывает вокруг голубой звезды эллипс.

Cлайд 3

визуально двойными астрометрически двойными затменно-двойные спектрально двойные

Cлайд 4

Часто звезды в парах сильно различаются по блеску, тусклую звездочку затмевает блеском яркая. Иногда в таких случаях астрономы узнают о двойственности звезды по отклонениям в движении яркой звезды под действием невидимого спутника от рассчитанной для одиночной звезды траектории в пространстве. Такие пары называют астрометрически двойными. В частности, Сириус долго относился к такому типу двойных, пока мощность телескопов не позволила разглядеть невидимый доселе спутник - Сириус В. Эта пара стала визуально двойной.

Cлайд 5

Бывает, что плоскость обращения звезд вокруг их общего центра масс проходит или почти проходит через глаз наблюдателя. Орбиты звезд такой системы расположены, как бы, ребром к нам. Здесь звезды будут периодически затмевать друг друга, блеск всей пары будет с тем же периодом меняться. Этот тип двойных называется затменно-двойными. Если же говорить о переменности звезды, то такую звезду называют затменно-переменной, что также указывает на ее двойственность. Самой первой открытой и самой известной двойной такого типа является звезда Алголь (Глаз Дьявола) в созвездии Персея.

Cлайд 6

Последним типом двойных являются спектрально двойные. Их двойственность определяется при изучении спектра звезды, в котором замечаются периодические смещения линий поглощения или видно, что линии являются двойными, на чем основывается вывод о двойственности звезды.

Cлайд 7

Часто, правда, встречаются так называемые кратные системы, с тремя и более компонентами. Однако движение трех и более взаимодействующих тел неустойчиво. В сиcтеме, скажем, из трех звезд всегда можно выделить, двойную подсистему и третью звезду, вращающуюся вокруг этой пары. В системе из четырех звезд могут существовать две двойные подсистемы, вращающиеся вокруг общего центра масс.

Cлайд 8

Cлайд 9

Во-первых, они дают возможность узнать массы звезд, так как легче всего и надежнее всего она вычисляется по видимому взаимодействию двух тел. Прямые наблюдения позволяют узнать общий "вес" системы, а если добавить к ним известные соотношения между массами звезд и их светимостями, о которых говорилось выше в рассказе о судьбе звезд, то можно выяснить массы компонентов, проверить теорию. Одиночные звезды такой возможности нам не предоставляют. Кроме того, как тоже было упомянуто ранее, судьба звезд в таких системах может разительно отличаться от судьбы таких же одиночных звезд.

З В Ё З Д Ы

Для начала выясним, какие звезды так называют. Давайте сразу отбросим тот тип двойных, который носит название "оптически двойные звезды". Это - пары звезд, случайно оказавшиеся рядом на небе, то есть в одном направлении, а в пространстве, на самом деле, их разделяют большие расстояния. Этот тип двойных мы рассматривать не станем. Нас будет интересовать класс физически двойных, то есть действительно связанных гравитационным взаимодействием звезд.

Физически двойные звезды по эллипсам вращаются вокруг общего центра масс. Однако, если отсчитывать координаты одной звезды относительно другой, то получится, что звезды движутся друг относительно друга тоже по эллипсам. На этом рисунке за начало отсчета мы взяли более массивную голубую звезду. В такой системе центр масс (зеленая точка) описывает вокруг голубой звезды эллипс. Хочется предостеречь читателя от распространенного заблуждения, заключающегося в том, что часто полагается будто бы более массивная звезда сильнее притягивает звезду с малой массой, чем наоборот. Любые два объекта притягивают друг друга одинаково. Но объект с большой массой труднее сдвинуть с места. И хотя падающий на Землю камень притягивает Землю с той же силой, что и Земля его, этой силой невозможно побеспокить нашу планету, и мы видим, как движется камень.

К системе из трех звезд принадлежит небезызвестная Альфа Центавра, считающаяся многими ближайшей к нам звездой, а на самом деле, третий слабый компонент этой системы - Проксима Центавра, красный карлик, - находится ближе. Все три звезды системы из-за близости видны раздельно. Действительно, иногда то, что звезда двойная, видно в телескоп. Такие двойные называются визуально двойными (не путать с оптически двойными!). Как правило, это не тесные пары, расстояния между звездами в них велики, гораздо больше их собственных размеров.

Слайд 1

Описание слайда:

Слайд 2

Описание слайда:

Типы двойных звезд Для начала выясним, какие звезды так называют. Давайте сразу отбросим тот тип двойных, который носит название "оптически двойные звезды". Это - пары звезд, случайно оказавшиеся рядом на небе, то есть в одном направлении, а в пространстве, на самом деле, их разделяют большие расстояния. Этот тип двойных мы рассматривать не станем. Нас будет интересовать класс физически двойных, то есть действительно связанных гравитационным взаимодействием звезд.

Слайд 3

Описание слайда:

Слайд 4

Описание слайда:

Слайд 5

Описание слайда:

Слайд 6

Описание слайда:

Слайд 7

Описание слайда:

Слайд 8

Описание слайда:

Слайд 9

Описание слайда:

Чем же интересны двойные звезды? Во-первых, они дают возможность узнать массы звезд, так как легче всего и надежнее всего она вычисляется по видимому взаимодействию двух тел. Прямые наблюдения позволяют узнать общий "вес" системы, а если добавить к ним известные соотношения между массами звезд и их светимостями, о которых говорилось выше в рассказе о судьбе звезд, то можно выяснить массы компонентов, проверить теорию. Одиночные звезды такой возможности нам не предоставляют. Кроме того, как тоже было упомянуто ранее, судьба звезд в таких системах может разительно отличаться от судьбы таких же одиночных звезд. Небесные пары, расстояния между которыми велики, по сравнению с размерами самих звезд, на всех стадиях своей жизни живут по тем же законам, что и одиночные звезды, не мешая друг другу. В этом смысле, их двойственность никак не проявляется.

Слайд 10

Описание слайда:

Тесные пары: первый обмен массами Звезды двойной рождаются вместе из одной газопылевой туманности, у них один возраст, но часто - разные массы. Мы уже знаем, что более массивные звезды живут "быстрее", следовательно, более массивная звезда в процессе эволюции обгонит свою сверстницу. Она расширится, превращаясь в гиганта. В этом случае, размер звезды способен стать таким, что вещество с одной звезды (раздувшейся) начнет перетекать на другую. Как следствие, масса первоначально более легкой звезды может стать больше первоначально тяжелой! Кроме того, мы получим две звезды одинакового возраста, причем более массивная звезда еще находится на главной последовательности, то есть в ее центре по-прежнему продолжается синтез гелия из водорода, а более легкая звезда уже израсходовала свой водород, в ней образовалось геливое ядро. Вспомним, что в мире одиночных звезд такого произойти не может. За несоответствие возраста звезды с ее массой это явление названо парадоксом Алголя, в честь той же самой затменно-двойной. Звезда Бета Лиры - еще одна пара, в которой прямо сейчас происходит обмен массами.

Слайд 11

Описание слайда:

Слайд 12

Описание слайда:

Слайд 13

Описание слайда:

Второй обмен массами В двойных же системах встречаются также рентгеновские пульсары, излучающие в более высокоэнергетическом диапазоне длин волн. Это излучение связано с аккрецией вещества вблизи магнитных полюсов релятивистской звезды. Источником аккреции служат частицы звездного ветра, испускаемые второй звездой (та же природа и у солнечного ветра). Если звезда имеет большие размеры, звездный ветер достигает значительной плотности, энергия излучения рентгеновского пульсара может доходить до сотни и тысячи светимостей Солнца. Рентгеновский пульсар - единственный способ косвенного обнаружения черной дыры, которую, как мы помним, увидеть нельзя. Да и нейтронная звезда является редчайшим объектом для визуальных наблюдений. На этом еще далеко не все. Вторая звезда тоже рано или поздно раздуется, и вещество начнет перетекать на соседку. И это - уже второй обмен веществом в двойной системе. Достигнув больших размеров, вторая звезда начинает "возвращать" забранное при первом обмене.

Слайд 14

Описание слайда:

Если на месте первой звезды оказывается белый карлик, то в результате второго обмена на его поверхности могут происходить вспышки, которые мы наблюдаем как новые звезды. В один момент, когда вещества, выпавшего на поверхность сильно нагретого белого карлика, становится слишком много, температура газа возле поверхности резко повышается. Это провоцирует взрывоподобный всплеск ядерных реакций. Светимость звезды значительно увеличивается. Такие вспышки могут повторяться, и их называют уже повторными новыми. Повторные вспышки слабее первых, в результате которых звезда может увеличивать свой блеск в десятки раз, что мы и наблюдаем с Земли как появление "новой" звезды. Если на месте первой звезды оказывается белый карлик, то в результате второго обмена на его поверхности могут происходить вспышки, которые мы наблюдаем как новые звезды. В один момент, когда вещества, выпавшего на поверхность сильно нагретого белого карлика, становится слишком много, температура газа возле поверхности резко повышается. Это провоцирует взрывоподобный всплеск ядерных реакций. Светимость звезды значительно увеличивается. Такие вспышки могут повторяться, и их называют уже повторными новыми. Повторные вспышки слабее первых, в результате которых звезда может увеличивать свой блеск в десятки раз, что мы и наблюдаем с Земли как появление "новой" звезды.

Слайд 15