Презентация "применение теоремы пифагора". Доказательства теоремы пифагора - презентация Скачать презентацию на тему доказательство теоремы пифагора

Слайд 1

Теорема Пифагора
"Заслугой первых греческих математиков, таких как Фалес, Пифагор и пифагорейцы, является не открытие математики, но ее систематизация и обоснование. В их руках вычислительные рецепты, основанные на смутных представлениях, превратились в точную науку."

Слайд 2

Слайд 3

История теоремы
Исторический обзор начнем с древнего Китая. Здесь особое внимание привлекает математическая книга Чупей. В этом сочинении так говорится о пифагоровом треугольнике со сторонами 3, 4 и 5: "Если прямой угол разложить на составные части, то линия, соединяющая концы его сторон, будет 5, когда основание есть 3, а высота 4". В этой же книге предложен рисунок, который совпадает с одним из чертежей индусской геометрии Басхары.

Слайд 4

Кантор (крупнейший немецкий историк математики) считает, что равенство 3 ² + 4 ² = 5² было известно уже египтянам еще около 2300 г. до н. э., во времена царя Аменемхета I (согласно папирусу 6619 Берлинского музея). По мнению Кантора гарпедонапты, или "натягиватели веревок", строили прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5.

Слайд 5

Очень легко можно воспроизвести их способ построения. Возьмем веревку длиною в 12 м. и привяжем к ней по цветной полоске на расстоянии 3м. от одного конца и 4 метра от другого. Прямой угол окажется заключенным между сторонами длиной в 3 и 4 метра. Гарпедонаптам можно было бы возразить, что их способ построения становиться излишним, если воспользоваться, например, деревянным угольником, применяемым всеми плотниками. И действительно, известны египетские рисунки, на которых встречается такой инструмент, например рисунки, изображающие столярную мастерскую.

Слайд 6

Несколько больше известно о теореме Пифагора у вавилонян. В одном тексте, относимом ко времени Хаммураби, т. е. к 2000 г. до н. э., приводится приближенное вычисление гипотенузы прямоугольного треугольника. Отсюда можно сделать вывод, что в Двуречье умели производить вычисления с прямоугольными треугольниками, по крайней мере в некоторых случаях. Основываясь, с одной стороны, на сегодняшнем уровне знаний о египетской и вавилонской математике, а с другой-на критическом изучении греческих источников,Ван-дер-Варден (голландский математик) сделал следующий вывод:

Слайд 7

Формулировка теоремы
« Доказать, что квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на катетах» « Площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах».
Во времена Пифагора теорема звучала так:
или

Слайд 8

Современная формулировка
« В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов».

Слайд 9

Доказательства теоремы
Существует около 500 различных доказательств этой теоремы (геометрических, алгебраических, механических и т.д.).

Слайд 10

Самое простое доказательство
Рассмотрим квадрат, показанный на рисунке. Сторона квадрата равна a + c.
c
a

Слайд 11

В одном случае (слева) квадрат разбит на квадрат со стороной b и четыре прямоугольных треугольника с катетами a и c.
a
c
a
c
В другом случае (справа) квадрат разбит на два квадрата со сторонами a и c и четыре прямоугольных треугольника с катетами a и c.
a
c
Таким образом, получаем, что площадь квадрата со стороной b равна сумме площадей квадратов со сторонами a и c.

Слайд 12

Доказательство Евклида
Дано: ABC-прямоугольный треугольник Доказать: SABDE=SACFG+SBCHI

Слайд 13

Доказательство:
Пусть ABDE-квадрат, построенный на гипотенузе прямоугольного треугольника ABC, а ACFG и BCHI-квадраты, построенные на его катетах. Опустим из вершины C прямого угла перпендикуляр CP на гипотенузу и продолжим его до пересечения со стороной DE квадрата ABDE в точке Q; соединим точки C и E, B и G.

Слайд 14

Очевидно, что углы CAE=GAB(=A+90°); отсюда следует, что треугольники ACE и AGB(закрашенные на рисунке) равны между собой (по двум сторонам и углу, заключённому между ними). Сравним далее треугольник ACE и прямоугольник PQEA; они имеют общее основание AE и высоту AP, опущенную на это основание, следовательно SPQEA=2SACE Точно так же квадрат FCAG и треугольник BAG имеют общее основание GA и высоту AC; значит, SFCAG=2SGAB
Отсюда и из равенства треугольников ACE и GBA вытекает равновеликость прямоугольника QPBD и квадрата CFGA; аналогично доказывается и равновеликость прямоугольника QPAE и квадрата CHIB. А отсюда, следует, что квадрат ABDE равновелик сумме квадратов ACFG и BCHI, т.е. теорема Пифагора.

Слайд 15

Алгебраическое доказательство
Дано: ABC-прямоугольный треугольник Доказать: AB2=AC2+BC2
Доказательство: 1) Проведем высоту CD из вершины прямого угла С. 2) По определению косинуса угла соsА=AD/AC=AC/AB, отсюда следует AB*AD=AC2. 3) Аналогично соsВ=BD/BC=BC/AB, значит AB*BD=BC2. 4) Сложив полученные равенства почленно, получим: AC2+BC2=АВ*(AD + DB) AB2=AC2+BC2. Что и требовалось доказать.

Слайд 16

Геометрическое доказательство
Дано: ABC-прямоугольный треугольник Доказать: BC2=AB2+AC2
Доказательство: 1) Построим отрезок CD равный отрезку AB на продолжении катета AC прямоугольного треугольника ABC. Затем опустим перпендикуляр ED к отрезку AD, равный отрезку AC, соединим точки B и E. 2) Площадь фигуры ABED можно найти, если рассматривать её как сумму площадей трёх треугольников:
SABED=2*AB*AC/2+BC2/2 3) Фигура ABED является трапецией, значит, её площадь равна: SABED= (DE+AB)*AD/2. 4) Если приравнять левые части найденных выражений, то получим: AB*AC+BC2/2=(DE+AB)(CD+AC)/2 AB*AC+BC2/2= (AC+AB)2/2 AB*AC+BC2/2= AC2/2+AB2/2+AB*AC BC2=AB2+AC2. Это доказательство было опубликовано в 1882 году Гэрфилдом.

Слайд 17

Значение теоремы Пифагора
Теорема Пифагора- это одна из самых важных теорем геометрии. Значение её состоит в том, что из неё или с её помощью можно вывести большинство теорем геометрии.

Слайд 18

В средние века теорема Пифагора, magister matheseos, определяла границу если не наибольших возможных, то по крайней мере хороших математических знаний. Характерный чертёж теоремы Пифагора, который ныне иногда превращается школьниками, например, в облаченного в мантию профессора (рис. 7, 8) или в человечка в цилиндре (рис. 9) и т.п., в те времена всеобщей страсти к символам нередко употреблялся как символ математики. Столь же часто мы встречаемся с «Пифагором» в средневековой живописи, мозаике, геральдике.

История теоремы. Древний Китай Исторический обзор начнем с древнего Китая. Здесь особое внимание привлекает математическая книга Чу-пей. В этом сочинении так говорится о пифагоровом треугольнике со сторонами 3, 4 и 5: Исторический обзор начнем с древнего Китая. Здесь особое внимание привлекает математическая книга Чу-пей. В этом сочинении так говорится о пифагоровом треугольнике со сторонами 3, 4 и 5: " Если прямой угол разложить на составные части, то линия, соединяющая концы его сторон, будет 5, когда основание есть 3, а высота 4". В этой же книге предложен рисунок, который совпадает с одним из чертежей индусской геометрии Басхары. В этой же книге предложен рисунок, который совпадает с одним из чертежей индусской геометрии Басхары.


Несколько больше известно о теореме Пифагора у вавилонян. В одном тексте, относимом ко времени Хаммураби, т. е. к 2000 г. до н. э., приводится приближенное вычисление гипотенузы прямоугольного треугольника. Отсюда можно сделать вывод, что в Двуречье умели производить вычисления с прямоугольными треугольниками, по крайней мере в некоторых случаях. Геометрия у индусов, как и у египтян и вавилонян, была тесно связана с культом. Весьма вероятно, что теорема о квадрате гипотенузы была известна в Индии уже около 18 века до н. э. Древняя Индия


Кантор (крупнейший немецкий историк математики) считает, что равенство: 3² + 4² = 5² было известно уже египтянам еще около 2300 г. до н. э., во времена царя Аменемхета I (согласно папирусу 6619 Берлинского музея) По мнению Кантора гарпедонапты, или "натягиватели веревок", строили прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5. Очень легко можно воспроизвести их способ построения. Возьмем веревку длиною в 12 м. и привяжем к ней по цветной полоске на расстоянии 3 м. от одного конца и 4 метра от другого. Прямой угол окажется заключенным между сторонами длиной в 3 и 4 метра.


Основываясь, с одной стороны, на сегодняшнем уровне знаний о египетской и вавилонской математике, а с другой - на критическом изучении греческих источников, Ван-дер-Варден (голландский математик) сделал следующий вывод: "Заслугой первых греческих математиков, таких как Фалес, Пифагор и пифагорейцы, является не открытие математики, но ее систематизация и обоснование. В их руках вычислительные рецепты, основанные на смутных представлениях, превратились в точную науку."




Великий ученый Пифагор родился около 570 г. до н.э. на острове Самосе. Отцом Пифагора был Мнесарх, резчик по драгоценным камням. Имя же матери Пифагора неизвестно. По многим античным свидетельствам, родившийся мальчик был сказочно красив, а вскоре проявил и свои незаурядные способности. Страсть к музыке и поэзии великого Гомера Пифагор сохранил на всю жизнь. Вскоре, неугомонному воображению юного Пифагора стало тесно на маленьком Самосе, и он отправляется в Милет, где встречается с другим ученым - Фалесом. Затем отправляется в путешествие и попадает в плен к вавилонскому царю Киру. В 530 г. до н.э. Кир двинулся в поход против племен в Средней Азии. И, пользуясь переполохом в городе, Пифагор сбежал на родину.


А на Самосе в то время царствовал тиран Поликрат. После нескольких месяцев притязаний со стороны Поликрата, Пифагор переселяется в Кротон. В Кротоне Пифагор учредил нечто вроде религиозно- этического братства или тайного монашеского ордена ("пифагорейцы"), члены которого обязывались вести так называемый пифагорейский образ жизни....Прошло 20 лет. Слава о братстве разнеслась по всему миру. Однажды к Пифагору приходит Килон, человек богатый, но злой, желая спьяну вступить в братство. Получив отказ, Килон начинает борьбу с Пифагором, воспользовавшись поджогом его дома. При пожаре пифагорейцы спасли жизнь своему учителю ценой своей, после чего Пифагор затосковал и вскоре покончил жизнь самоубийством.



Теорема Пифагора. В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Другие формулировки теоремы. У Евклида эта теорема гласит (дословный перевод): "В прямоугольном треугольнике квадрат стороны, натянутой над прямым углом, равен квадратам на сторонах, заключающих прямой угол". В Geometria Culmonensis (около 1400 г.) в переводе теорема читается так: "Итак, площадь квадрата, измеренного по длинной стороне, столь же велика, как у двух квадратов, которые измерены по двум сторонам его, примыкающим к прямому углу".


Простейшее доказательство. Простейшее доказательство теоремы получается в простейшем случае равнобедренного прямоугольного треугольника. В самом деле, достаточно просто посмотреть на мозаику равнобедренных прямоугольных треугольников, чтобы убедиться в справедливости теоремы. Например, для треугольника ABC: квадрат, построенный на гипотенузе АС, содержит 4 исходных треугольника, а квадраты, построенные на катетах -по два.


Доказательство методом вычитания. Познакомимся с другим доказательством методом вычитания. Знакомый нам чертеж теоремы Пифагора заключим в прямоугольную рамку, направления сторон которой совпадают с направлениями катетов треугольника. Продолжим некоторые из отрезков фигуры так, как указано на рисунке, при этом прямоугольник распадается на несколько треугольников, прямоугольников и квадратов. Выбросим из прямоугольника сначала несколько частей так чтобы остался лишь квадрат, построенный на гипотенузе. Эти части следующие: 1. треугольники 1, 2, 3, 4; 2. прямоугольник 5; 3. прямоугольник 6 и квадрат 8; 4. прямоугольник 7 и квадрат 9;


Затем выбросим из прямоугольника части так, чтобы остались только квадраты, построенные на катетах. Этими частями будут: 1. прямоугольники 6 и 7; 2. прямоугольник 5; 3. прямоугольник 1(заштрихован); 4. прямоугольник 2(заштрихован); Нам осталось лишь показать, что отнятые части равновелики. Это легко видеть в силу расположения фигур. Из рисунка ясно, что: 1. прямоугольник 5 равновелик самому себе; 2. четыре треугольника 1,2,3,4 равновелики двум прямоугольникам 6 и 7; 3. прямоугольник 6 и квадрат 8, взятые вместе, равновелики прямоугольнику 1 (заштрихован);; 4. прямоугольник 7 вместе с квадратом 9 равновелики прямоугольнику 2(заштрихован); Теорема доказана


Доказательство Эйнштейна Точки E, C и F лежат на одной прямой; это следует из несложных расчётов градусной меры угла ECF (он развёрнутый). CD проводим перпендикулярно EF. Продолжены вверх левая и правая стороны квадрата, построенного на гипотенузе, до пересечения с EF; продолжена сторона ЕА до пересечения с CD. Соответственно равные треугольники одинаково пронумерованы.


В самом деле, треугольники ABD и BFC равны по двум сторонам и углу между ними: FB = AB, BC = BD, а углы между ними равны как тупые углы со взаимно перпендикулярными сторонами. S ABD = 0,5 S BJLD, так как у треугольника ABD и прямоугольника BJLD общее основание BD и общая высота LD. Аналогично S FBC=0,5 S ABFH (BF-общее основание, АВ-общая высота). Отсюда, учитывая, что S ABD= S FBC, имеем S BJLD= S ABFH. Аналогично, если вы проведёте отрезок АЕ используете равенство треугольников ВСК и АСЕ, то докажете, что S JCEL= S ACKG. Итак, S ABFH+ S ACKG= S BJLD+ S JCEL= S BCED, что и требовалось доказать. Это доказательство было приведено Евклидом в его "Началах". По свидетельству Прокла (Византия), оно придумано самим Евклидом. Доказательство Евклида приведено в предложении 47 первой книги "Начал". На гипотенузе и катетах прямоугольного треугольника АВС строятся соответствующие квадраты и доказывается, что прямоугольник BJLD равновелик квадрату ABFH, а прямоугольник JCEL - квадрату АGКС. Тогда сумма площадей квадратов на катетах будет равна площади квадрата на гипотенузе.





Вторая тайна – точно неустановленное количество доказательств знаменитой теоремы Пифагора Самосского. Именно по этому поводу я решила провести социологический опрос, который показал, что большинство людей старшего поколения согласны с существованием 250 доказательств, хотя мне из дополнительных источников известно, что существует более 350 доказательств этой теоремы, поэтому она даже попала в Книгу рекордов Гиннеса! Но, конечно же, принципиально различных идей в этих доказательствах используется сравнительно немного.


Третья тайна – это то, что теорема Пифагора является сегодня символом математики. Четвёртая тайна – теорема Пифагора представляет нам богатейший материал для обобщения – важнейшего вида мыслительной деятельности, основы теоретического мышления, которым в совершенстве владеют многие учёные. Здесь можно добавить, что от теоремы Пифагора можно перейти к другим теоремам.


Пятая тайна заключается в том, что некоторые исследователи приписывают Пифагору доказательство, которое Евклид приводил в первой книге своих «Начал». С другой стороны, Прокл (математик V в.) утверждал, что доказательство в «Началах» принадлежало самому Евклиду. Но всё- таки сегодня способ доказательства Пифагора остаётся неизвестным.


Шестая тайна – легенды о самом Пифагоре, человеке, который первым доказал эту теорему. Существует легенда, что когда Пифагор Самосский доказал свою теорему, он отблагодарил богов, принеся в жертву 100 быков. Также о гипнотических способностях учёного ходили легенды: будто он одним своим взглядом мог менять направление полёта птиц. А ещё рассказывали, что этого удивительного человека одновременно видели в разных городах, между которыми было несколько дней пути. И что ему якобы принадлежало «колесо фортуны», вращая которое, он не только предсказывал будущее, но и вмешивался, если это было необходимо, в ход событий.

Слайд 1

Теорема Пифагора

Пребудет вечной истина, как скоро Её познает слабый человек! И ныне теорема Пифагора Верна, как и в его далёкий век.

Слайд 2

Формулировка теоремы Доказательства теоремы Значение теоремы Пифагора

Слайд 3

Формулировка теоремы

« Доказать, что квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на катетах» « Площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах».

Во времена Пифагора теорема звучала так:

Слайд 4

Современная формулировка

« В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов».

Слайд 5

Доказательства теоремы

Существует около 500 различных доказательств этой теоремы (геометрических, алгебраических, механических и т.д.).

Слайд 6

Самое простое доказательство

Рассмотрим квадрат, показанный на рисунке. Сторона квадрата равна a + c.

Слайд 7

В одном случае (слева) квадрат разбит на квадрат со стороной b и четыре прямоугольных треугольника с катетами a и c.

В другом случае (справа) квадрат разбит на два квадрата со сторонами a и c и четыре прямоугольных треугольника с катетами a и c.

Таким образом, получаем, что площадь квадрата со стороной b равна сумме площадей квадратов со сторонами a и c.

Слайд 8

Доказательство Евклида

Дано: ABC-прямоугольный треугольник Доказать: SABDE=SACFG+SBCHI

Слайд 9

Доказательство:

Пусть ABDE-квадрат, построенный на гипотенузе прямоугольного треугольника ABC, а ACFG и BCHI-квадраты, построенные на его катетах. Опустим из вершины C прямого угла перпендикуляр CP на гипотенузу и продолжим его до пересечения со стороной DE квадрата ABDE в точке Q; соединим точки C и E, B и G.

Слайд 10

Очевидно, что углы CAE=GAB(=A+90°); отсюда следует, что треугольники ACE и AGB(закрашенные на рисунке) равны между собой (по двум сторонам и углу, заключённому между ними). Сравним далее треугольник ACE и прямоугольник PQEA; они имеют общее основание AE и высоту AP, опущенную на это основание, следовательно SPQEA=2SACE Точно так же квадрат FCAG и треугольник BAG имеют общее основание GA и высоту AC; значит, SFCAG=2SGAB

Отсюда и из равенства треугольников ACE и GBA вытекает равновеликость прямоугольника QPBD и квадрата CFGA; аналогично доказывается и равновеликость прямоугольника QPAE и квадрата CHIB. А отсюда, следует, что квадрат ABDE равновелик сумме квадратов ACFG и BCHI, т.е. теорема Пифагора.

Слайд 11

Алгебраическое доказательство

Дано: ABC-прямоугольный треугольник Доказать: AB2=AC2+BC2

Доказательство: 1) Проведем высоту CD из вершины прямого угла С. 2) По определению косинуса угла соsА=AD/AC=AC/AB, отсюда следует AB*AD=AC2. 3) Аналогично соsВ=BD/BC=BC/AB, значит AB*BD=BC2. 4) Сложив полученные равенства почленно, получим: AC2+BC2=АВ*(AD + DB) AB2=AC2+BC2. Что и требовалось доказать.

Слайд 12

Геометрическое доказательство

Дано: ABC-прямоугольный треугольник Доказать: BC2=AB2+AC2

Доказательство: 1) Построим отрезок CD равный отрезку AB на продолжении катета AC прямоугольного треугольника ABC. Затем опустим перпендикуляр ED к отрезку AD, равный отрезку AC, соединим точки B и E. 2) Площадь фигуры ABED можно найти, если рассматривать её как сумму площадей трёх треугольников:

SABED=2*AB*AC/2+BC2/2 3) Фигура ABED является трапецией, значит, её площадь равна: SABED= (DE+AB)*AD/2. 4) Если приравнять левые части найденных выражений, то получим: AB*AC+BC2/2=(DE+AB)(CD+AC)/2 AB*AC+BC2/2= (AC+AB)2/2 AB*AC+BC2/2= AC2/2+AB2/2+AB*AC BC2=AB2+AC2. Это доказательство было опубликовано в 1882 году Гэрфилдом.

Слайд 13

Значение теоремы Пифагора

Теорема Пифагора- это одна из самых важных теорем геометрии. Значение её состоит в том, что из неё или с её помощью можно вывести большинство теорем геометрии.

Слайд 14

Доказательство теоремы Пифагора учащиеся средних веков считали очень трудным и называли его Dons asinorum - ослиный мост, или elefuga - бегство «убогих», так как некоторые «убогие» ученики, не имевшие серьезной математической подготовки, бежали от геометрии. Слабые ученики, заучившие теоремы наизусть, без понимания, и прозванные поэтому «ослами», были не в состоянии преодолеть теорему Пифагора, служившую для них вроде непреодолимого моста. Из-за чертежей, сопровождающих теорему Пифагора, учащиеся называли ее также «ветряной мельницей», составляли стихи, вроде «Пифагоровы штаны на все стороны равны», рисовали карикатуры.

Основные задачи Рассмотреть биографию Пифагора Познакомиться с его школой Собрать исторические сведения о теореме Исследовать различные способы доказательства теоремы Пифагора Рассмотреть исторические и практические задачи на применение теоремы Пифагора


Пифагор Самосский (ок ок. 500 г. до н.э.) Пифагор и его школа Пифагор родился около 580 г. до н.э. на греческом острове Самосе. Получил хорошее образование. В Греции он организовал свою школу, которая действовала почти 30 лет, её раньше называли пифагорейским союзом. Пифагор не оставил после себя собраний сочинений, он держал всё в тайне и передавал ученикам устно. Самое большее, что известно сейчас – это теорема Пифагора.


История теоремы Пифагора Исторический обзор начинается с древнего Китая. Египтяне строили прямые углы при помощи таких треугольников, используя натягивание верёвки. В древнем Вавилоне в 2000 г. до н.э. проводили приближённое вычисление гипотенузы прямоугольного треугольника. Теорема Пифагора обнаружена в папирусе времён фараона Аменемхета и вавилонских клинописных табличках VII-V в. до н.э. Сегодня принято считать, что Пифагор дал первое доказательство носящей его имя теоремы, но оно не сохранилось.






Доказательство Евклида Дано: Δ ABC - прямоугольный Доказать: S ABFH + S ACKG = S BCED. Доказательство: AO- высота, опущенная на гипотенузу. Докажем, что её продолжение делит построенный на гипотенузе квадрат на два прямоугольника, площади которых равны площадям соответствующих квадратов, построенных на катетах. Докажем, что прямоугольник BOLD равновелик квадрату ABFH. Δ ABD=ΔBFC (по двум сторонам и углу между ними BF=AB; BC=BD; угол FBC = углу ABD). S Δ ABD=1/2 S прямоугольника BOLD, т.к. у ΔABD и прямоугольника BOLD общее основание BD и общая высота LD. АНАЛОГИЧНО, S ΔFBC=1/2 S прямоугольника ABFH (BF-общее основание, AB-общая высота). Отсюда, учитывая, что S Δ ABD = S ΔFBC, имеем: S BOLD=S ABFH. АНАЛОГИЧНО, используя равенство Δ BCK и Δ ACE, доказывается, что S OCEL= S ACKG. S ABFH + S ACKG = S BOLD + S OCEL = S BCED. O


Доказательство методом площадей Дано: abc – прямоугольный треугольник Доказать: c 2 = a 2 + b 2 Доказательство: Расположим четыре равных прямоугольных треугольника так, как показано на рисунке. Четырёхугольник со сторонами c является квадратом, так как сумма двух острых углов 90°, а развёрнутый угол 180°. Площадь всей фигуры равна, с одной стороны, площади квадрата со стороной (a+b), а с другой стороны, сумме площадей четырёх треугольников и площади внутреннего квадрата. Что и требовалось доказать





Построим ΔABC с прямым углом С. Доказательство Гофмана A B C a b c F D E Построим BF=CB, BF CB Построим BE=AB, BE AB Построим AD=AC, AD AC Точки F, C, D принадлежат одной прямой. Как мы видим, четырёхугольники ADFB и ACBE равновелики, т.к. ΔABF= ΔЕCB. Треугольники ADF и ACE равновелики. Отнимем от обоих равновеликих четырёхугольников общий для них ΔABC, получим: 1/2 а 2 +1/2b 2 =1/2 с 2 Соответственно: а 2 + b 2 =с 2


Доказательство Вальдхейма Дано: прямоугольный треугольник с катетами a и b, гипотенузой - c Доказать: a²+b²=c² Доказательство: Выразим площадь трапеции двумя путями. Sтрапеции = (a+b)²/2 Sтрапеции = ab + c²/2 При ревнивая правые части получим: a²+b²=c² Теорема доказана.


Векторное доказательство Дано: АВС - прямоугольный треугольник с прямым углом при вершине С, построенный на векторах СВ и СА Доказать: c² = a² + b² Доказательство: Справедливо векторное равенство: b + c = a, откуда имеем c = a – b, возводя обе части в квадрат, получим c² = a² + b² - 2a b Так как СВ перпендикулярно СА, то a b = 0, откуда c² = a² + b² или c² = a² + b²


Исторические задачи Задача индийского математика 12 века Бхаскары: «На берегу реки рос тополь одинокий Вдруг ветра порыв его ствол надломал. Бедный тополь упал. И угол прямой С течением реки его ствол составлял. Запомни теперь, что в этом месте река В четыре лишь фута была широка. Верхушка склонилась у края реки. Осталось три фута всего от ствола, Прошу тебя, скоро теперь мне скажи: У тополя как велика высота?» Решение: пусть СD – высота тополя, DC=CB + BD, по теореме Пифагора имеем АС ² + СВ ² = АВ ², 3 ² + 4 ² = 25, АВ = 5 футов. CD = 3+5 = 8(футов) Ответ: 8 футов.


Древнеиндийская задача Над озером тихим С полфута размером Он рос одиноко. И ветер порывом Отнес его в сторону. Нет Боле цветка над водой. Нашёл же рыбак его ранней весной В двух футах от места, где рос. Итак, предложу я вопрос: Как озера вода здесь глубока? Какова глубина в современных единицах длины? Решение: Выполним чертёж к задаче и обозначим глубину озера DС =Х, тогда BD = AD = Х + 0,5. Из треугольника DCB по теореме Пифагора имеем CD² = DB² – CB². (Х + 0,5)² – Х² = 2², Х² + Х² + 0,25 – Х² = 4, Х = 3,75. Таким образом, глубина озера составляет 3,75 фута. 3, 75 0,3 = 1,125 (м) Ответ: 3,75 фута или 1, 125 м.




Какую наибольшую высоту должна иметь антенна мобильного оператора, чтобы передачу можно было принимать в радиусе R=200 км? (радиус Земли равен 6380 км.) Решение: Пусть AB= x, BC=R=200 км, OC= r =6380 км. OB=OA+AB OB=r + x. Используя теорему Пифагора, получим ответ: 2,3 км.




Молниеотвод Известно, что молниеотвод защищает от молнии все предметы, расстояние которых от его основания не превышает его удвоенной высоты. Необходимо определить оптимальное положение молниеотвода на двускатной крыше, обеспечивающее наименьшую его доступную высоту. Решение: По теореме Пифагора h2 a2+b2, значит h(a2+b2)1/2.


Окна В зданиях готического и романского стиля верхние части окон расчленяются каменными ребрами, которые не только играют роль орнамента, но и способствуют прочности окон. На рисунке представлен простой пример такого окна в готическом стиле. Способ построения его очень прост: Из рисунка легко найти центры шести дуг окружностей, радиусы которых равны ширине окна (b) для наружных дуг половине ширины, (b/2) для внутренних дуг Остается еще полная окружность, касающаяся четырех дуг. Т. к. она заключена между двумя концентрическими окружностями, то ее диаметр равен расстоянию между этими окружностями, т. е. b/2 и, следовательно, радиус равен b/4. А тогда становится ясным и положение ее центра.


В романской архитектуре часто встречается мотив, представленный на рисунке. Если b по-прежнему обозначает ширину окна, то радиусы полуокружностей будут равны R = b / 2 и r = b / 4. Радиус p внутренней окружности можно вычислить из прямоугольного треугольника, изображенного на рис. пунктиром. Гипотенуза этого треугольника, проходящая через точку касания окружностей, равна b/4+p, один катет равен b/4, а другой b/2-p. По теореме Пифагора имеем: (b/4+p) ²=(b/4) ²+(b/2-p) ² или b²/16+ bp/2+p²=b²/16+b²/4-bp+p², откуда bp/2=b²/4-bp. Разделив на b и приводя подобные члены, получим: (3/2)p=b/4, p=b/6.


Астрономия На этом рисунке показаны точки A и B и путь светового луча от A к B и обратно. Путь луча показан изогнутой стрелкой для наглядности, на самом деле, световой луч - прямой. Какой путь проходит луч? Поскольку свет идет туда и обратно одинаковый путь, спросим сразу: чему равно расстояние между точками?


Строительство крыши При строительстве домов и коттеджей часто встает вопрос о длине стропил для крыши, если уже изготовлены балки. Например: в доме задумано построить двускатную крышу (форма в сечении). Какой длины должны быть стропила, если изготовлены балки AC=8 м., и AB=BF. Решение: Треугольник ADC - равнобедренный AB=BC=4 м., BF=4 м. Если предположить, что FD=1,5 м., тогда: А) Из треугольника DBC: DB=2,5 м., Б) Из треугольника ABF:







Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

2 слайд

Описание слайда:

План Введение Биография Пифагора Простейшее доказательство теоремы Древнекитайское доказательство Доказательство Евклида Доказательство теоремы Пифагора Еще одно алгебраическое доказательство Египетский треугольник Заключение Список литературы Авторы

3 слайд

Описание слайда:

Введение Трудно найти человека, у которого имя Пифагора не ассоциировалось бы с теоремой Пифагора. Пожалуй, даже те, кто в своей жизни навсегда распрощался с математикой, сохраняют воспоминания о «пифагоровых штанах» - квадрате на гипотенузе, равновеликом двум квадратам на катетах. Причина такой популярности теоремы Пифагора триедина: это простота - красота - значимость. Теорема Пифагора имеет огромное значение: она применяется в геометрии буквально на каждом шагу, и тот факт, что существует около 500 различных доказательств этой теоремы (геометрических, алгебраических, механических и т.д.), свидетельствует о гигантском числе ее конкретных реализаций.

4 слайд

Описание слайда:

Биография Пифагора Пифагор родился около 570 г. до н.э. на острове Самосе. В юности Пифагор отправляется в Милет, где встречается с ученым Фалесом, который советует ему отправится за знаниями в Египет. В 548 г. до н.э. Пифагор прибыл в самосскую колонию. Изучив язык и религию египтян, он уезжает в Мемфис. Жрецы не спешили раскрывать Пифагору свои тайны, предлагая ему сложные испытания, но Пифагор преодолел их все. Научившись всему, что дали ему жрецы, он двинулся на родину в Элладу. Однако, проделав часть пути, его захватил в плен царь Вавилона. Вавилонская математика была более развитой, чем египетская, и Пифагору было чему поучится, позже он сбежал на родину. На родине Пифагор учредил нечто вроде религиозно-этического братства. ...Прошло 20 лет. Однажды к Пифагору приходит Килон, человек богатый, но злой, желая спьяну вступить в братство. Получив отказ, он поджигает дом Пифагора. При пожаре пифагорейцы спасли жизнь своему учителю ценой своей, после чего Пифагор покончил жизнь самоубийством.

5 слайд

Описание слайда:

Теорема Пифагора В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов c²=a²+b²

6 слайд

Описание слайда:

Простейшее доказательство “Квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на его катетах” Рассмотрим равнобедренный прямоугольный треугольник (с него и начиналась теорема). Достаточно посмотреть на мозаику равнобедренных прямоугольных треугольников. Для ABC квадрат, построенный на гипотенузе АС, содержит 4 исходных треугольника, а квадраты, построенные на катетах, - по 2.

7 слайд

Описание слайда:

Древнекитайское доказательство Рассмотрим рис.1: а+b - сторона внешнего квадрата, с - сторона внутреннего. Если вырезать внутренний квадрат (рис.1) со стороной с и уложить части его как показано на рис.2, получим: c²=a²+b²

8 слайд

Описание слайда:

Доказательство Евклида Дано: ∆АВС-прямоугольный, а,b-катеты, с-гипотенуза, ABHF, AGKC, BCED-квадраты Доказать: c²=a²+b² Доказательство: 1. ∆ABD=∆FBC(по 2-м сторонам и углу м/у ними) BC=BD FB=AB ∟DBА=90ْ +∟ABC=∟FBC 2. S∆ABD=1∕2SBYLD BD- общее основание, LD- общая высота 3. S∆FBC = 1∕2 SABFY (аналогично 2) 4. SABFH = SBYLD, т.к. ∆ABD=∆FBC 5. SACKG= SYCEL , т.к. ∆BCK=∆ACE(аналогично 1-4) 6. b²+a²=c² => c²=a²+b².

9 слайд

Описание слайда:

Доказательство теоремы Пифагора Дано: треугольник АВС - прямоугольный a, b - катеты с-гипотенуза Доказать: c2=a2+b2 Доказательство: 1. (a + b)2 = 4(1/2ab) + c2 2. a2 + 2ab + b2 = 2ab + c2 3. a2 + b2 = c2

10 слайд

Описание слайда:

Еще одно алгебраическое доказательство Дано: ∆АВС – прямоугольный, ∟С=90º Доказать: АС²+СВ²=АВ² Доказательство: 1.CD-высота. 2. cosА=AD/AC=AC/AB =>AD∙AB=AC² 3. cosB=BD/BC=BC/AB =>AB∙BD=BC² 4. Получим: AD∙AB+AB∙BD=AC²+BC² AB(AD+BD)=AC²+BC² AB²=AC²+BC²

11 слайд

Описание слайда:

Пифагоровы треугольники Прямоугольные треугольники, у которых длины сторон выражаются целыми числами, называются пифагоровыми треугольниками: 3, 4 и 5 5, 12 и 13 8, 15 и 17 7, 24 и 25