При слиянии гамет. Гаметы

Что же происходит до слияния гамет?

Чтобы ответить на этот вопрос нужно разобраться, что же представляет из себя "слияние гамет"?

Что такое "слияние гамет"

Слияние гамет (сингамия) или по-другому оплодотворение - это вид полового размножения, при котором происходит слияние половых клеток особей обоих полов (гамет). К примеру, у человека к половым клеткам относятся сперматозоиды (мужские) и яйцеклетка (женские). Все гаметы содержат хромосомы - их 23, при слияние половых клеток образуется зигота с набором хромосом 46. Зигота начинает делиться, благодаря чему появляются органы и системы нового человека.

Что же происходит до слияния гамет

Для того, чтобы произошло слияние гамет нужно, чтобы образовались половые клетки у мужской и у женской особи. Этот процесс называется гаметогенез, который проходит в половых железах. К примеру, у женской особи половые клетки образуются в яичниках (такой процесс называется оогенез), а мужские в семенниках (сперматогенез). Образование клеток проходит в несколько этапов: размножение, рост, созревание, формирование (у мужских особей).

  • 1 этап - размножение. На этом этапе клетки активно делятся и образуются половые клетки, которые еще имеют диплоидный набор хромосом (то есть у них набор хромосом полный, как и у всех клеток организма). Этот этап у мужских особей происходит в период полового созревания и продолжается всю жизнь. У женских особей общее количество половых клеток, которые будут формироваться в процессе ее репродуктивной деятельности закладываются еще в эмбрионе.
  • 2 этап - рост. На данном этапе увеличивается цитоплазма клеток. Накапливаются питательные вещества и удваивается набор хромосом.
  • 3 этап - созревание. На этом этапе происходит мейоз - то есть это деление клеток, при котором уменьшается вдвое набор хромосом. Клетки становятся с гаплоидным набором хромосом (то есть с одинарным набор хромосом).
  • 4 этап - формирование. Выделяют этот этап в процессе формирования сперматогенеза.
    Таким образом, чтобы произошло слияние гамет нужно, чтобы образовались половые клетки мужской и женской особи. Процесс их образования очень сложный и удивительно интересный.

План

План

План

План

Изогамия представляет слияние двух одинаковых по форме планогамет (подвижных гамет). В результате копуляции образуется дикарион – подвижная планозигота, снабженная жгутиками. Она внедряется в ткани восприимчивого растения, теряет жгутики, становится неподвижной, одевается сплошной оболочкой и превращается в покоящуюся спору-цисту.

Типы полового процесса у грибов

Репродуктивное половое размножение

Половое размножение грибов состоит в слиянии мужских и женских половых гамет, в результате чего возникает зигота. При образовании зиготы ядра сливаются, происходит удвоение числа хромосом и наступает диплоидная (двойная) фаза с полным (парным) набором хромосом. Половые спороношения грибов сопровождающиеся сменой ядерных фаз, называют телеоморфами, а всю совокупность стадий развития одного гриба - голоморфой. Споры полового размножения называют также мейоспорами, поскольку их образованию предшествует мейотическое деление ядра. Половой процесс состоит из трех стадий: плазмогамии, кариогамии и мейоза.

Плазмогамия представляет собой слияние клеток и объединение двух протопластов, которые приносят два различных ядра в одну клетку. При этом ядра тут же сливаются (кариогамия), но чаще сохраняют самостоятельность в течение определенного времени. Возникшая в результате копуляции клетка имеет два ядра (дикарион). Если дикарион даст начало новому мицелию, то клетки, его образующие, будут сохранять состояние дикариона, такой мицелий называют дикариотичным. Затем наступает вторая фаза – кариогамия.

Кариогамия (диплоидизация) – слияние ядер в одно ядро зитогы. Получившееся при этом ядро содержит двойной набор хромосом, объединяющий хромосомы родительских ядер, и называется диплоидным. Если диплоидная клетка дает начало мицелию, то его клетки будут сохранять состояние диплоида, т.е. сформируется диплоидный мицелий.

Мейоз (редукция) – на определенной стадии развития (неодинаковой у разных грибов) диплоидное ядро претерпевает редукционное деление, в результате чего в цикле восстанавливается гаплоидное число хромосом. Таким образом, для грибов характерно чередование в цикле развития гаплоидного и диплоидного состояния, или ядерных фаз: от копуляции до редукции – диплоидная фаза; от редукции до новой копуляции – гаплоидная фаза.

Все многообразие форм полового размножения грибов может быть сведено к трем основным типам: гаметогамия, геметангиогамия и соматогамия.

Гаметогамия представляет собой слияние гамет, образующихся в гаметангиях или голых гамет. Этот тип полового процесса характерен для низших грибов и может протекать в виде изогамии, гетерогамии или оогамии.


При созревании цисты происходит кариогамия и возникает диплоидное ядро. Впоследствии осуществляется его редукционное деление, затем образовавшиеся гаплоидные ядра делятся, возникает многоядерная клетка – зооспорангий. Вокруг каждого гаплоидного ядра обособляются участки (комочки) цитоплазмы – будущие зооспоры. При полном созревании оболочка зооспорангия разрывается, и подвижные зооспоры выбрасываются наружу. У некоторых наиболее примитивных грибов (слизевики) появляется диплоидный амебоид.

Гетерогамия представляет слияние двух подвижных морфологически разнящихся гамет. Продуктом полового процесса является циста.

Оогамия б олее сложная форма полового процесса, при которой крупные неподвижные яйцеклетки, формирующиеся в оогониях, оплодотворяются мелкими подвижными сперматозоидами, развивающимися в антеридиях. Оогоний имеет шаровидную форму и одет довольно толстой оболочкой, в которой заметны более тонкие места – поры. Через них происходит впоследствии оплодотворение. Первоначально сплошное многоядерное содержимое оогония распадается затем на несколько одноядерных яйцеклеток, свободно лежащих в виде шаров. Внутри оболочки иногда остается только одна яйцеклетка, на образование которой идет центральная часть плазмы. Мужская клетка – антеридий развивается на конце боковой ветви и представляет собой округлую или цилиндрическую клетку, развивающуюся на том же мицелии или на другом, со многими клеточными ядрами, но не дифференцированную на обособленные гаметы. Антеридий к моменту созревания плотно соприкасается с оогонием и пускает через поры отростки, после чего содержимое антеридия поступает внутрь яйцеклетки и затем осуществляется плазмогамия и кариогамия, которые не разделены во времени. После оплодотворения яйцеклетки превращаются в покоящиеся клетки – ооспоры с толстой, часто скульптурированной оболочкой. При прорастании происходит редукционное деление диплоидного ядра и образование гаплоидных ядер. Гаплоидные ядра поочередно делятся, возникает многоядерный зооспорангий. Ооспоры могут возникать на наружном мицелии экзогенно или внутри тканей в межклетниках – эндогенно.

Гаметангиогамия илиангиогамия представляет собой слияние двух не дифференцированных на гаметы структур, содержащих несколько ядер и имеющих противоположные половые знаки. Этот тип полового процесса характерен для низших грибов класса Зигомицеты, а также для высших грибов класса Аскомицеты. Гаметангиогамию у зигомицетов чаще всего называют зигогамией. Она характеризуется полным слиянием двух внешне одинаковых контактирующих гаметангиев. Гаметангии образуются как вздутия на вершине двух совместимых гиф или ветвей гиф, которые направлены друг и другу и контактируют друг с другом. Стенка между ними растворяется и содержимое смешивается. Образуется одна клетка, в которой происходит кариогамия. Образующаясязигоспора (зигота) покрывается толстой оболочкой и прорастает после периода покоя.

Плазмогамия и кариогамия не разделены во времени и следуют непосредственного друг за другом, в результате чего образуется диплоидная зигота. При прорастании зиготы имеет место мейоз, и весь жизненный цикл этих грибов протекает в гаплоидной фазе.

У примитивных форм аскомицетов половой процесс гаметангиогамия сходен с зигогамией у Зигомицетов. Гаметангии разного пола морфологически сходны или малоразличимы и представляют выросты или веточки мицелия. После их слияния сразу происходит кариогамия и сумки развиваются непосредственно из зиготы. Однако, в отличие от зигомицетов, в многоядерных гаметангиях сливаются только два ядра (нет множественной кариогамии), зигота не переходит в состояние покоя, а сразу развивается в сумку. Таким образом, в цикле развития низших аскомицетов есть только гаплоидная и диплоидная фазы. У высших аскомицетов плазмогамия и кариогамия разделены во времени и пространстве. У них есть дифференциация и усложнение строения гаметангиев. Мужской половой орган называют антеридием, а женский – архикарпом, он состоит из цилиндрической части – аскогона и его выроста – трихогины, через которую переливается содержимое антеридия. Из продукта слияния двух половых клеток начинают развиваться короткие нити мицелия, аскогенные гифы, в которые строго синхронно делясь поступают дикарионы. Верхняя часть аскогенной гифы загибается в виде крючка и в ней происходит последнее деление пары ядер. Из образовавшихся четырех ядер два остаются в верхушечной клетке, которая отделяется перегородкой. Одно ядро поступает в крючок, другое – в нижнюю часть аскогенной гифы. Верхушечная часть аскогенной гифы увеличивается в размерах и развивается в сумку, в ней происходит слияние дикариона в одно диплоидное ядро. Ядро из крючка поступает в нижнюю часть аскогенной гифы под материнской клеткой и снова образует дикарион. Образовавшееся диплоидное ядро делится редукционно, за мейозом следует еще одно митотическое деление аскоспоры. Одновременно с образованием сумок происходит их оплетение гаплоидным мицелием, формируется плодовое тело – аскокарп.

Соматогамия представляет собой слияние двух клеток вегетативного мицелия. Половые органы отсутствуют, а половую функцию выполняют соматические клетки. Слияние чаще всего происходит путем образования анастомозов между гифами. Половой процесс этого типа характерен для базидиальных грибов и заключается в слиянии мицелиев разного полового знака. Слияние мицелия происходит на ранних стадиях прорастания базидиоспор. Базидиоспоры обычно одноядерны и имеют гаплоидный набор хромосом. После прорастания базидиоспоры в ростковую трубку происходит слияние ростковых трубок мицелиев разных половых знаков, т.к. большинство базидиомицетов гетероталличны (разнополые). Так же как у сумчатых грибов, плазмогамия и кариогамия у базидиомицетов значительно разделены во времени. В результате слияния двух гаплоидных мицелиев вскоре после прорастания базидиоспор происходит слияние их цитоплазмы, но кариогамии при этом не происходит, а ядра ассоциируются строго попарно, образуя так называемые дикарионы, также как это имеет место в аскогенных гифах аскомицетов. Дальнейшее развитие мицелия осуществляется в дикариофитном состоянии. Дикариофитная стадия занимает большую часть цикла развития базидиомицетов. Таким образом, мицелий большинства базидиомицетов проходит три хорошо выраженные стадии: гаплоидную, дикариофитную и диплоидную.

Развитию базидии предшествует слияние пары ядер дикариона в одно диплоидное ядро. Участок гифы, в котором происходит это слияние, отделяется перегородкой и образует материнскую клетку базидии. Она несколько увеличивается в размерах и в ней происходит два последовательных деления ядра, одно из которых мейотическое, в результате чего образуется 4 ядра. В это же время на поверхности базидии образуется 4 выроста, вздувающихся на концах, в них поступают по одному ядру. Эти выросты, содержащие ядра, образуют базидиоспоры.

Лекция № 4

СИСТЕМАТИКА ГРИБОВ

1. Краткая история изучения систематики грибов.

2. Царство Protozoa, или Protoctista.

3. Царство Chromista (Псевдогрибы).

4. Царство Mycota, Fungi (Настоящие грибы).

Отдел Chytrydiomycota (Хитридиомицеты).

Отдел Zygomycota (Зигомицеты).

1. Краткая история изучения систематики грибов

Со времен К.Линнея ("Система природы", 1735) грибы традиционно относили к царству растений. Однако уже к началу XIX века ряд ботаников указывали на то, что между грибами и растениями имеются существенные различия. Первым крупным систематиком был шведский ученый Э.Фриз, который положил основу номенклатуры грибов и дал описание многих видов. В 1851 г. Фриз предложил выделить грибы в самостоятельное царство живого мира. Однако у большинства биологов как XIX, так и первой половине XX века эта точка зрения поддержки не нашла.

Вместе с тем, бурное развитие физиологии и биохимии, особенно с середины XX века, накопление данных о строении и составе клетки грибов все более ставили под сомнение положение грибов в царстве растений и заставляло ученых вновь вернуться к вопросу о месте грибов в системе живого мира. Полученные новые данные по биохимии и физиологии грибов, по ультраструктуре их клетки, составу и строению клеточной оболочки позволили установить, что грибы по своему строению, характеру обмена и способу питания занимают промежуточное положение между животными и растениями и несут отдельные черты, как тех, так и других. Таким образом, на основании полученных данных, начиная с 70-х годов, грибы стали рассматривать как самостоятельное царство живого мира наряду с царствами животных и растений (Тахтаджан, 1973; Whittaker, Margulis, 1978; Margulis, Schwarz, 1982 и др.).

До последнего времени в нашей отечественной литературе и особенно в учебной чаще использовалась система, по которой царство грибов Mycota делилось на два отдела: Myxomycota (Слизевики) и Eu-mycota (настоящие грибы). В отделе настоящих грибов рассматривалось шесть классов: Chytridiomycetes, Oomycetes, Zigomycetes, Ascomycetes, Basidiomycetes, Deuteromycetes (Шевченко, 1978; Соколова, Семенкова, 1981; Шевченко, Цилюрик, 1986; Попкова, 1989; Федоров, 1992 и др.). В известном шеститомнике "Жизнь растений" под редакцией проф.М.В.Горленко в отделе Eu-mycota кроме уже упомянутых основных шести классов приводится также класс Trichomycetes. Кроме этого в специальной литературе встречалась также несколько модифицированная система Л. Олайва (Olive, 1975), где в царстве грибов выделяли три отдела:

Myxomycota, Oomycota с двумя классами и Eu-mycota с пятью классами (цитир.по Л.В.Гарибовой, 2002). Эта система соответствовала гипотезе о двух ветвях развития грибов. Отдел Myxomycota был отнесен Еdwards (1976) к Protozoa. В отечественной литературе отдел Myxomycota традиционно включался в царство грибов.

За последние 10-20 лет традиционные представления о царстве грибов, взгляды на их происхождение, эволюцию и филогенетические связи подвергались основательному пересмотру. Появилось большое количество систем грибов, предложенных микологами разных стран мира. В связи с предполагаемым происхождением грибов от жгутиковых организмов

Рост, созревание гамет и другие обстоятельства, приводящие к встрече мужских и женских половых клеток, имеют лишь предварительное значение на пути к их соединению. Проникновение сперматозоида в яйцеклетку и происходящее в результате этого соединение ядерных веществ обеих клеток являются кульминационным моментом процесса оплодотворения и возвещают о начале жизни нового индивидуума.

Прямые наблюдения над соединением гамет у млекопитающих весьма незначительны и отрывочны. Тем не менее, сопоставляя эти наблюдения с более обширными данными, полученными при изучении водных животных, у которых оплодотворение протекает вне материнского организма, нетрудно представить себе весь ход событий.

Если половое сношение здоровых мужчины и женщины произошло примерно во время овуляции, потребуется лишь несколько часов на то, чтобы яйцеклетка, вступившая в бахромчатый конец маточной трубы, была окружена большим числом сперматозоидов, из которых всего лишь один проникает в яйцеклетку. Сразу же после внедрения сперматозоида яйцеклетка испытывает изменения, направленные на предотвращение проникновения в нее других сперматозоидов.

Это явление можно легко наблюдать под микроскопом у многих морских видов, проводя опыты в чашке с морской водой. Как только сперматозоиды будут введены в чашку, содержащую яйцеклетки, как сразу же можно увидеть, как они толпами окружают каждую яйцеклетку. Несмотря на относительно громадный объем яйцеклетки, она может быть даже приведена во вращение под влиянием объединенных усилий сперматозоидов.

Когда один сперматозоид проник в яйцеклетку, ее поверхностная оболочка тотчас же утолщается и остановится менее проницаемой; одновременно остальные сперматозоиды теряют свою направленную активность, и вскоре по соседству с оплодотворенной яйцеклеткой остаются только одиночные сперматозоиды. То, что эти изменения связаны с оплодотворением яйцеклетки, а не с потерей активности другими сперматозоидами, легко может быть доказано путем добавления в чашку неоплодотворенных яйцеклеток и наблюдения за их оплодотворением оставшимися сперматозоидами.

В яйцеклетку проникают лишь головка сперматозоида (которая состоит почти исключительно из ядерного вещества) и шейка (содержащая центросомный аппарат). Хвостик при внедрении сперматозоида отпадает. В яйцеклетке ядерное вещество, содержавшееся в головке сперматозоида, сразу же теряет свой компактный вид и в нем выявляются хромосомы. В таком состоянии оно называется мужским пронуклеусом.

Обычно у млекопитающих при овогенезе первое деление созревания наблюдается сразу же после овуляции, а второе деление созревания, вероятно, задерживается до проникновения в яйцеклетку сперматозоида. Однако как только сперматозоид проникает в яйцеклетку, все процессы быстро активируются и к моменту образования мужского пронуклеуса второе деление созревания заканчивается. Ядро яйцеклетки с этого момента называется женским пронуклеусом.

Оплодотворение заканчивается лишь тогда, когда хромосомы мужского и женского пронуклеусов сольются вместе. Так как каждый пронуклеус содержит гаплоидный набор хромосом, в оплодотворенной яйцеклетке восстанавливается полный диплоидный набор хромосом, характерный для данного вида.

В период между проникновением в яйцеклетку сперматозоида и объединением хромосом обоих пронуклеусов центросомный аппарат, доставленный сперматозоидом, образует митотическое веретено. Хромосомы в этот период готовятся к первому митотическому делению оплодотворенной яйцеклетки. Это деление обычно происходит вскоре после соединения пронуклеусов, но механизм его активации чрезвычайно сложен и его природа остается неизвестной.

Ясно, что он не ограничивается только соединением мужского и женского пронуклеусов , так как у некоторых из низших животных, обладающих легко доступными для экспериментирования гаметами, сперматозоиды могут начать деление в цитоплазме яйцеклеток с удаленными ядрами. В других случаях сперматозоид, ядерное вещество которого было необратимо повреждено лучами радия, мог еще проникать в яйцеклетку и побуждать ее к делению.

Больше того, яйцеклетки многих низших животных могут начать развитие в отсутствие сперматозоидов, под влиянием соответствующих механических или химических стимулов, что было названо искусственным партеногенезом. Однако, как правило, в таких случаях развитие оказывается гораздо слабее и продолжается недолго. Активация клеточного деления оказывается недостаточной без наличия полноцепного сперматозоида, необходимого для поддержания нормальной силы роста.

Процесс слияния гамет, т.е. собственно оплодотворение, разделяют на три последовательные фазы:

1) дистантное взаимодействие гамет и их сближение;

2) контактное взаимодействие гамет и активизация яйцеклетки;

3) вхождение сперматозоида в яйцо и последующее слияние гамет - сингамия.

Первая фаза (дистантное взаимодействие гамет) обеспечивается хемотаксисом - действием совокупности специфических факторов увеличивающих вероятность контакта половых клеток. Осуществляются на некотором расстоянии, до соприкосновения гамет друг с другом. Они направлены на повышение вероятности встречи сперматозоидов и яйцеклетки. Дистантные взаимодействия характерны для водных организмов, с наружным типом оплодотворения. При этом животные сталкиваются со следующими проблемами:

* осуществление встречи спермиев и яиц при их низкой концентрации в среде;

* предотвращение оплодотворения яиц спермиями другого вида.

В ходе эволюции выработалось, соответственно и два механизма и для решения поставленных задач: видоспецифичное привлечение спермиев и видоспецифичная их активация.

Видоспецифичное привлечение спермиев доказано для многих животных: кишечнополостных, моллюсков, иглокожих и первично-хордовых. Оно представляет собой род хемотаксиса - и движения по градиенту концентрации вещества. В 80-х гг. XX удалось идентифицировать два видоспецифичных аттрактантасперматозоидов морских ежей - сперакт и резакт. Об вещества относятся к пептидам и содержат 10 и 14 аминокислотных остатков соответственно. Важную роль в этом хемотаксисе принадлежит гамонам - химическим веществам, вырабатываемым половыми клетками. Яйцеклетка способна продуцировать т.н. гиногамоны или фертилизины, а сперматозоид - андрогомогы. Гиногамон I - низкомолекулярное вещество небелковой природы, котороеактивирует движение сперматозоидов, повышая вероятность их встречи с яйцом. Гиногамон II - вещество белковой природы (гликопротеин), которое вызывает связывание сперматозоидов при взаимодействии с комплементарным ему андрогомоном II, встроенным в поверхностную оболочку спермия. Андрогомон I подавляет подвижность спермия. Андрогомон II разжижает студенистое вещество и растворяет оболочку яйца, поэтому его зачастую отождествляют с гиалуронидазой. Установлено, что яйцеклетки выделяют пептиды, способствующие привлечению сперматозоидов. Сразу после эякуляции сперматозоиды не способны к проникновению в яйцеклетку до тех пор, пока не произойдет капацитация - приобретение спермиями оплодотворяющей способности. Капацитация происходит в течение приблизительно семи часов под действием секрета женских половых путей. В процессе капацитации с плазмалеммы спермия в области акросомы удаляются гликопротеины и протеины семенной плазмы, что способствует акросомальной реакции. В механизме капацитации большое значение принадлежит действию гормонов, прежде всего прогестерона (гормон желтого тела), активизирующего секрецию железистых клеток яйцеводов. Во время капацитации происходят связывание холестерола цитолеммы спермия альбуминами женских половых путей и обнажение биохимических рецепторов половых клеток.

Оплодотворение происходит в ампулярной части яйцевода. Оплодотворению предшествует осеменение - дистантное взаимодействие и сближение гамет, обусловленное хемотаксисом.

Вторая фаза оплодотворения - контактное взаимодействие, во время которого сперматозоиды вращают яйцеклетку. Многочисленные спермии приближаются к яйцеклетке и вступают в контакт с её оболочкой. Яйцеклетка начинает совершать вращательные движения вокруг своей оси со скоростью ~4 оборота в минуту. Эти движения обусловлены биением жгутиков сперматозоидов, которые продолжаются около ~12 ч.

В процессе контактного взаимодействия мужской и женской половых клеток в спермиях происходит акросомальная реакция. Она заключается в слиянии наружной мембраны акросомы с передними двумя третями поверхности плазмалеммы спермия. Затем мембраны разрываются в области слияния и в среду высвобождаются ферменты акросомы. Запуск второй фазы оплодотворения происходит под влиянием сульфатированных полисахаридов блестящей (прозрачной) зоны. Они вызывают поступление ионов кальция и натрия в головку спермия, замещение ими ионов калия и водорода и разрыв мембраны акросомы. Прикрепление спермия к яйцеклетке происходит под влиянием углеводной группы фракции гликопротеинов прозрачной зоны яйцеклетки. Рецепторы спермия для прозрачной зоны представляют собой фермент гликозилтрансферазу. Этот фермент, находящийся на поверхности акросомы головки сперматозоида, «узнаёт» сахар N-ацетилглюкозамин - рецептор женской половой клетки. Плазматические мембраны в месте контакта половых клеток сливаются и происходит плазмогамия - объединение цитоплазм обеих гамет.

Сперматозоиды при контакте с яйцеклеткой могут связывать десятки тысяч молекул гликопротеида Zp3. При этом отмечается запуск акросомальной реакции. Акросомальная реакция характеризуется повышением проницаемости плазмалеммы спермия к ионам Са2+ и её деполяризацией. Это способствует слиянию плазмалеммы с передней мембраной акросомы.

Ферменты разрушают блестящую зону, спермий проходит через разрыв и входит в перивителлиновое пространство, расположенное между блестящей зоной и плазмалеммой яйцеклетки. Через несколько секунд изменяются свойства плазмалеммы яйцеклетки, и начинается кортикальная реакция, а ещё через несколько минут наступает зонная реакция, в процессе которой изменяются свойства блестящей зоны.

Оплодотворению способствуют сотни других, принимающих участие в осеменении, сперматозоидов. Ферменты, выделяемые из акросом, - спермолизины (трипсин, гиалуронидаза) разрушают лучистый венец, расщепляют гликозаминогликаны прозрачной зоны яйцеклетки. Отделяющиеся фолликулярные клетки склеиваются в конгломерат, который вслед за яйцеклеткой перемещается по маточной трубе благодаря мерцанию ресничек эпителиальных клеток слизистой оболочки маточной трубы.

Третья фаза оплодотворения - сингамия. В овоплазму проникают головка и промежуточная часть хвостового отдела. После вхождения сперматозоида в овоцит на периферии овоплазмы происходит её уплотнение (зонная реакция) и образуется оболочка оплодотворения.. Кортикальная реакция - это слияние плазмалеммы яйцеклетки с мембранами кортикальных гранул. В результате этого содержимое из гранул выходит в перивителлиновое пространство и воздействует на молекулы гликопротеидов блестящей зоны. Вследствие этой зонной реакции молекулы Zp3 модифицируются и утрачивают способность быть рецепторами спермиев. Образуется оболочка оплодотворения толщиной ~50 нм, препятствующая полиспермии, то есть проникновению других спермиев. Механизм кортикальной реакции включает приток ионов натрия через участок мембраны сперматозоида, встроенный в поверхность яйцеклетки после завершения акросомальной реакции. В результате отрицательный мембранный потенциал клетки становится слабоположительным. Приток ионов натрия обусловливает высвобождение ионов кальция из внутриклеточных депо и увеличение его содержания в гиалоплазме яйцеклетки. Вслед за этим начинается экзоцитоз кортикальных гранул. Высвобождающиеся из них протеолитические ферменты разрывают связи между блестящей зоной и плазмалеммой яйцеклетки, а также между спермиями и прозрачной зоной. Кроме того, выделяется гликопротеид, связывающий воду и привлекающий её в пространство между плазмалеммой и блестящей зоной. Вследствие этого формируется перивителлиновое пространство. Наконец, выделяется фактор, способствующий отвердению прозрачной зоны и образованию из нее оболочки оплодотворения.

Благодаря механизмам предотвращения полиспермии только одно гаплоидное ядро сперматозоида получает возможность слиться с одним гаплоидным ядром яйцеклетки, что приводит к восстановлению характерного для всех клеток диплоидного набора хромосом. Проникновение сперматозоида в яйцеклетку через несколько минут значительно усиливает процессы внутриклеточного метаболизма, что связано с активизацией её ферментативных систем. Это служит стимулом для завершения второго деления мейоза, и овоцит второго порядка становится зрелым яйцом. При этом образуется также второе полярное тельце, которое тотчас же дегенерирует, а хвост сперматозоида рассасывается в цитоплазме ядра. Ядра обеих гамет превращаются в пронуклеусы и сближаются. Мембраны пронуклеусов разрушаются, а отцовские и материнские хромосомы прикрепляются к образовавшимся нитям веретена. К этому времени оба гаплоидных набора, содержащих у человека по 23 хромосомы, уже реплицировались, и возникшие в результате 46 пар хроматид выстраиваются по экватору веретена, как в метафазе митоза. Слияние пронуклеусов называется кариогамией и продолжается около ~12 ч. На этой стадии восстанавливается диплоидное число хромосом. После слияния женского и мужского пронуклеусов оплодотворенное яйцо получает название зиготы (одноклеточный зародыш). Зигота проходит стадии анафазы и телофазы и завершает свое первое митотическое деление. Следующий за этим цитокинез приводит к образованию из одноклеточного зародыша двух диплоидных дочерних клеток. Уже на стадии зиготы выявляются презумптивные зоны (лат.: presumptio - вероятность, предположение) как источники развития соответствующих участков бластулы, из которых в дальнейшем формируются зародышевые листки. Процесс оплодотворения заканчивается и начинаются процессы дробления

ОПЛОДОТВОРЕНИЕ

Сущность процесса оплодотворения состоит в слиянии женской и мужской гамет в одну клетку - зиготу, которая является не только клеткой, но и становится одноклеточным зародышем.

Слияние гамет может произойти только при условии совместного действия многих биологических факторов. Циклы развития по­ловых клеток должны протекать синхронно так, чтобы сперма­тозоиды и яйцеклетки созревали и выделялись в одни и те же сроки.

Оплодотворению предшествует осеменение - процесс, приво­дящий к контакту мужской и женской половых клеток. Спер­матозоиды становятся подвижными только после того, как они

попадают в жидкость, являющуюся секретом семенных пузырь­ков, предстательной железы и куперовых желез. У человека спер­матозоиды вводятся в верхнюю часть влагалища, откуда им пред­стоит пройти до маточных труб, в верхней части которых про­исходит встреча и слияние гамет. В одном эякуляте у человека содержится до 250-300 млн сперматозоидов, но только неболь­шой доле из них удается приблизиться к яйцеклетке. Первое препятствие, с которым встречается сперматозоид -~ это естес­твенная кислотность верхней части влагалища, создающая бак­терицидную среду. Семенная жидкость, однако, действует в ка­честве буфера против кислотности и очень быстро (в течение нескольких секунд) изменяет рН среды от 4,3 до 7,2. Некоторые спермин достигают устья маточной трубы уже через 30 мин после осеменения. Столь быстрое продвижение сперматозоидов не может быть объяснено только собственным активным движением, так как их скорость равна лишь 2-4 мм в мин. В этом случае продвижению способствуют спазматические сокращения гладких мышц матки, действие места соединения матки с маточной тру­бой в качестве клапана, а также способность спермиев двигаться против слабого тока жидкости (положительный реотаксис).

Необходимо также принимать во внимание, что обычно канал шейки матки заполнен густой слизью, преобладающей в течение большей части менструального цикла. Она имеет щелочную ре­акцию и способствует проникновению спермиев в матку благо­даря способности изменять состояние (физико-химические ха­рактеристики) мицеллярной сетеподобной структуры слизи под влиянием женских половых гормонов.

По мере продвижения сперматозоиды подвергаются специ­альному воздействию со стороны тканей женских половых ор­ганов, которое обеспечивает им в дальнейшем проникновение через яйцевые оболочки (капаситация). Природа его остается не совсем ясной.

Окруженное клетками лучистого венца овулировавшее яйцо попадает в маточную трубу благодаря усиленной мышечной ак­тивности бахромчатого края устья воронки трубы, а также току жидкости, создаваемому ресничками мерцательного эпителия, и перемещается по направлению к широкой ее части (ампуле). Фолликулярные клетки, образующие лучистый венец, также иг­рают важную роль в направленном перемещении яйцеклетки. Тем не менее установлено, что движение яйцеклетки все же в значительной степени зависит от ее массы, так как другие тела такой же величины способны столь же эффективно перемещаться вниз по маточной трубе.

2.4.1. Жизнеспособность гамет

Жизнеспособность сперматозоидов и яйцеклетки в женских половых органах ограничена во времени. Уже сразу же после овуляции в яйцеклетке возникают изменения, которые можно охарактеризовать как старение. Так, в овоплазме появляется зер­нистость, которая быстро становится грубой, снижается уровень общего обмена, который резко возрастает лишь в том случае, если произойдет оплодотворение. Оплодотворение должно свер­шиться в течение первых суток после овуляции, в противном случае яйцеклетка потеряет жизнеспособность.

Сохранение подвижности сперматозоидов и продолжитель­ность их жизни не может быть приравнена к их способности оплодотворять. Подвижность сперматозоидов сохраняется гораздо дольше. Доказано, что в половых путях сперматозоиды сохраняют способность к оплодотворению в течение первых 1-2 сут, тогда как их подвижность вдвое дольше.

2.4.2. Слияние гамет

Слияние гамет происходит в широкой части маточной трубы. Встреча яйца и сперматозоида - дело случая. Оплодотворение становится возможным только после того, как мужская и женская гаметы пришли в соприкосновение, но перед этим сперматозоид должен пройти через яйцевые оболочки - прежде всего через клетки лучистого венца, затем через блестящую оболочку, и только после этого через плазматическую мембрану яйцеклетки. Однако сначала у сперматозоидов, как уже упоминалось ранее, возникает акросомная реакция, необходимой предпосылкой ко­торой служит капаситация.

Акросомная реакция сперматозоида вызывает растворение оболочек, окружающих яйцеклетку (рис. 2.7). Хотя ее развитие не до конца ясно, имеются сведения, что начало реакции ини­циируется увеличением концентрации ионов Са +2 в сперматозо­иде во время оплодотворения. Повышение концентрации ионов Са +2 активирует фосфолипазы оболочки и акросомальные про-теазы. Эти ферменты соответственно разрушают оболочки акро-сомы и апикальную плазмолемму сперматозоида, а также акти­вируют акросомальные ферменты. Считается, что акросома со­держит, по крайней мере, три фермента:

- фермент, растворяющей клетки лучистого венца (СРЕ);

- акросомин - трипсиноподоб-ный фермент, разрыхляющий блес­тящую оболочку яйцеклетки;

- гиалуронидазу - растворяю­щую блестящую оболочку.

Пройдя через zona pellucida , сперматозоид попадает в периви-теллиновое пространство, отделяю­щее блестящую оболочку от плаз-молеммы яйцеклетки (рис. 2.8). В месте образования контакта спер­матозоида с яйцеклеткой, установ­ление которого облегчается за счет микроворсинок яйцеклетки, образу­ется выпячивание плазмолеммы, из­вестной под названием бугорка оп­лодотворения. После слияния плаз­матических мембран яйцеклетки и

сперматозоида бугорок оплодотворения втягивается, внося го­ловку сперматозоида в овоплазму. Сперматозоид при этом ли­шается большинства цитоплазматических структур, а именно: хвоста, митохондрий вставочной части, остатков акросомы. Ос­тается не совсем ясным, сохраняются ли у него центриоли.

После проникновения сперматозоида в яйцеклетку происходит подготовка молекул ДНК к возобновлению синтетических про­цессов, морфологически выражающаяся в набухании высококон­денсированного ядра, сопровождающимся раскручиванием хро-матиновых нитей. Уже в течение первых 12 ч наблюдается на­бухание ядер мужской и женской гамет (пронуклеусов), миграция их к центру яйцеклетки и появление хорошо заметных ядрышек. Затем, после исчезновения ядерных оболочек, окружавших про-нуклеусы, они сближаются друг с другом и происходит смешение материнских и отцовских хромосом (сингамия), являющееся пос­ледней стадией процесса оплодотворения.

Объединение генетического материала сперматозоида и яй­цеклетки с образованием нового одноклеточного организма - зиготы, знаменуется следующими важными событиями:

Гаплоидные наборы хромосом гамет объединяются в дип­лоидный набор зиготы;

Отцовская наследственность объединяется с материнской наследственностью;

Сперматозоид, вероятнее всего, вносит в овоплазму цент­риоли, которые становятся клеточным центром зиготы;

Сперматозоид активирует яйцеклетку, и поэтому зигота при­обретает высокий уровень обменных процессов.

2.4.3. Реакции оплодотворения

В процессе эволюции у животных возникло множество раз­нообразных биомеханизмов, характеризующих особенности раз­личных аспектов оплодотворения. Ярким подтверждением ска­занного являются результаты изучения способов, с помощью которых яйцеклетка предотвращает полиспермию, т. е. смешение своего генетического материала с генетическим материалом более чем одного сперматозоида. Так, некоторые виды животных (хвос­татые амфибии, рептилии и птицы) выработали специальные механизмы, позволяющие яйцеклеткам инактивировать ядра из­быточных сперматозоидов. Яйцеклетки же большинства позво­ночных с помощью поверхностного слоя кортикальных гранул научились предотвращать полиспермию.

У животных при моноспермном оплодотворении первая ре­акция, возникающая в ответ на слияние сперматозоида с яйцом, состоит в быстром изменении электрических свойств плазмолеммы яйцеклетки. Так, Cross и Elinson (1980) установили, что у лягушки мембранный потенциал яйдеклетки изменяется от -28 до +8 мВ уже через несколько секунд после слияния со сперматозоидом и остается положительным в течение 20 мин., препятствуя воз­никновению полиспермии, тогда как снижение его у оплодот­воренного яйца делает ее возможной.

Уже через несколько минут после проникновения спермато­зоида в яйцеклетку возникает другая поверхностная реакция, препятствующая полиспермии - кортикальная. Суть ее заклю­чается в том, что кортикальные гранулы, начиная с той точки, в которой произошло слияние яйца со сперматозоидом, пере­мещаются к внутренней поверхности плазмолеммы, сливаясь с ней, а затем выделяют свое содержимое в перивителлиновое пространство.

Кроме того, полиспермия блокируется блестящей оболочкой, которая становится непроницаемой для сперматозоидов уже через несколько минут после развития кортикальной реакции. И хотя природа поверхностных реакций остается не совсем ясной, вы­сказываются предположения, что полисахаридные комплексы, входящие в состав кортикальных гранул, вызывают уплотнение блестящей оболочки или же разрушают на ней рецепторы к сперматозоидам, или даже непосредственно инактивируют зона-лизин сперматозоидов. Плазматическая мембрана яйцеклетки также становится непроницаемой для сперматозоидов, но это происходит только через несколько часов после изменения блес­тящей оболочки.